
User Guide for reclassifying localisation microscopy data

This is the user guide for the Random Forest post processing method for localisation microscopy 
data. We're going to show all our demonstrations using Matlab R2014a, installed on a Linux Ubuntu
14.04 operating system. Some of the menus may look a bit different if your operating system or 
version of Matlab is different, but the functionality is the same.

Things you need to do/know first:
 Perform your PALM/STORM experiment.
 Save the image sequence as a series of individual images in their own folder somewhere. 

Note that this technique cannot currently examine .tiff image stacks or .nd2 files – you need 
to separate them out into individual images.  If your microscope software will not do this for
you, you can use ImageJ or Fiji to export your data (you may need a package such as 
Bioformats Importer to import your files).

 Analyse the results using a localisation algorithm, and save the fluorophore positions in a 
.csv file. This .csv file must contain an X and Y co-ordinate for each localisation, as well as 
the number of the frame in the time sequence where the localisation took place. Almost 
all localisation algorithms supply this information.  (Example data and an example .csv file 
are provided in the directory which contains your software, in the subdirectory 
example_images). 

 You need a working copy of Matlab with the Statistics and Machine Learning toolbox 
installed.

 You'll need some time to sit and label a number of localisations for the Random Forest 
classifer to be trained with.

To start with, you need to open Matlab. 

Once you've opened Matlab, you need to change directory into the folder in which the supplied .m 
files have been stored. This can be done using the cd (change directory) command.  In the example 
shown the directory with the software is pat/DATAPART2/sampling_paper/software/, but yours will
be different.



There should be 7 files in there:
 START.m
 label_samples.m
 make_features_from_scratch.m
 run_training.m
 stratisample.m
 train_tree.m
 display_results.m
 DISPLAY.m

There will also be a directory called example_images.  This contains 26000 images (analysed data 
presented in the paper).  The name of the first image is img00000.tiff and the rest are numbered 
sequentially.  There is also a file of localised molecule positions, thunderstorm.csv.

To start, you just need to run START().



The first thing which will happen is a window will pop up, like this:

It's probably not going to be the right size to read clearly, so you can change that by dragging the 
corners like normal:

Each of the buttons in this window corresponds to some piece of information the algorithm needs. 
Let's start at the top and click 'folder location'. That should open a popup window like this: 



This is asking for the folder in which the images you analysed using super resolution are stored. 

As a slight digression, let's take a quick look at what I've got stored in that folder:

This folder is full of the images which were analysed by the localisation algorithm. This is because 
the random forest classifier has to go back to the raw data to get enough information to perform its 
classification – it can't just work on the localisations alone. Note also that each image is saved as a 
separate file,  there must be no other images in that folder with the same file extension, and the 
images must be in order (so the first image in the folder is the first image which your localisation 
algorithm analysed).

We'll go back to Matlab now:



When you've found the correct folder, highlight it and click 'Open'. I'm going to select 
example_images. The popup window will disappear, and the window with lots of buttons will look 
something like this:

As you've selected a folder, the text next to that button has gone bold, and tells you which folder 
you've selected (in case you want to check you've got the right one).

The next button down sets the image extension. Click it and this should happen:



A new popup window asks what kind of images are stored in that folder. My images are all saved as
.tiff, so I'll leave it on the default and click 'OK'. Note that when you do this, Matlab will check the 
folder it's expecting to find the images in and make sure it can find at least one image with your 
chosen file extension. If not, you get an error box like this:

If you see this, check you've selected the folder with your images in, and used the right file 
extension (remember that Matlab will treat '.tif' and '.tiff' as being different).

The next button let's us set the pixel size. Click it and this happens:



This is asking for the size of the pixels in nm. We need this information as some localisation 
algorithms return estimated fluorophore positions in nm, so to correlate this with the image 
information, we need to be able to rescale appropriately.

The next button asks us to select the .csv file in which the localisations are stored. Another popup 
window will appear, asking you to select a file.

Most localisation algorithms I use give the option to save the results in a .csv file. If yours doesn't, 
then so long as you can read them into Matlab somehow you can use the csvwrite() function to 
create your own .csv file.

I've used ThunderSTORM as my localisation algorithm in this case, and saved the results in 
thunderstorm.csv in the same folder my raw images are stored in. So I'm going to select that and 



click 'Open'.

The next button is going to let us set some details about how the data is stored in the .csv file. Click 
it and you get something like this:

This is where you tell the classifier which columns in the .csv file store the information it needs. If 
you've created your own .csv file, or use this particular algorithm a lot, then you probably know 
this. If not, then no problem – let's just open the .csv file and take a look. I'll navigate to the folder 
my .csv file is in and find it:

The file I want is thunderstorm.csv. Double click this and it should open. Excel, Libre Office, gedit, 
notepad, etc can all open .csv files. My computer will open it using Libre Office:



And it looks like that. Let's just zoom in on the top right hand corner:

The first piece of information we need is how many columns are in the file. This is to help Matlab 
parse it later. We can see there are 8 columns, so enter that and hit 'OK':



Next,we need to know which column has the X co-ordinate of the localisations. In this file, that's 
the second column, to set it to 2 and hit 'OK'.

And now we need the Y column. That's just column 3. Enter and hit 'OK'.



The next box asks for the 'image number'. Each localisation your algorithm returns ought to tell you
what image it corresponds to – so if it found a molecule in the first image in the sequence, it ought 
to store a 1 in the corresponding row of the .csv file. In ThunderSTORM, this is the first column, so 
I'll set that to 1 and hit OK.

The next window asks what the offset of the localisations are, in pixel co-ordinates. This depends on
the co-ordinate system your localisation algorithm uses – basically, if we were to plot the point (0,0)
on the image, would that correspond to the middle of a pixel, or the top left corner of a pixel? 

If you're not sure then the best way to check is to create an image with a single simulated 



fluorophore in it, at a position you know, then run your localisation algorithm on the result and find 
out what co-ordinates it gives.

If you don't know this value then it's not a disaster. The classifier will not behave quite as well as 
this will introduce a degree of rotation dependency, but with enough training data it should be able 
to overcome this.

For ThunderSTORM, I know that the offset is 0.5 pixels, so I'll enter that and hit 'OK' 

The co-ordinates of the localisations is the last part. This is asking whether the columns with the X 
and Y co-ordinates in are saved in terms of pixels or nm. ThunderSTORM saves in nm, so I'll select 
that and press OK.

That's all the information we need about the .csv file. If we go back to the window with all the 
buttons, it now is like this:



The details of the .csv file are shown in bold, so you can check them.

The next button sets how many localisations you're going to label:

Labelling localisations is done in a separate popup window, which we'll explain in a moment. For 
each one, you'll be asked whether you judge the localisation to be accurate or inaccurate. The more 
of these you're willing to do, the better the classifier will be. I recommend 900, which I can label in 
about an hour, but we've built decent classifiers using just 300 in the past. It depends how much the 
appearance of your fluorophores varies during the image sequence, how much the illumination 
changes, etc, etc. 



The next window asks you to set the number of trees in the random forest:

Training trees for the forest is something the algorithm will do at the very end. A single decision 
tree is an unbiased, high variance classifier. Random Forests train very many decision trees and 
average their result – this remains unbiased, but lowers the variance. There's really no downside to 
setting this number to be very high. Each tree will slightly increase the training time, and also the 
run time, but they're very quick compared to a lot of algorithms so this shouldn't be an issue. And as
they make use of randomisation of the training data as part of their input, there's no real danger of 
them overfitting either.

The last window asks you to set the location to save the results:



The results are saved as a .mat file, which you can read using Matlab later. The default location is 
the same folder your images are kept in, and the default filename is 'randforest.mat',  but you can 
change these to anything you like.  If you keep the name ‘randforest.mat’ and there is already a file 
of that name, you will be asked if you want to overwrite the file.

The window with the buttons in should look like this now:

Now that we've set all the details, a new button has appeared, asking you to start the labelling 
process. When you're ready, click it.



The first thing you'll see is something like this:

Random forests require two parts to their training data – a feature vector, and a label. The feature 
vector is the input to the classifier, and the label is the thing it tries to predict. In our case the label 
for each localisation is going to be whether or not it's accurate. The feature vector draws 
information from the following sources:

 The pixel values of the local area around the localisation (±10 pixels)
 The pixel values of the same region in the image which came immediately before
 The pixel values of the same region in the image which came immediately afterwards
 The numeric values saved in each column of the .csv files other than the x co-ordinate, y co-

ordinate and image number.
These are transformed to the of of their absolute values, and Principal Component analysis applied 
to select the 20 components which capture most of the resulting variance. This creates a 20 
dimensional feature for each localisation. Note that as the features rely on being able to look in the 
images before and after the image the localisation was recorded in, all localisations from the very 
first and last images are ignored. Similarly, as the pixel region is formed from a 21 X 21 pixel 
square, all localisations within 10 pixels of the edge of the image are ignored too.

You'll probably notice that this is not the fastest operation. The reason behind this is that we 
deliberately avoid reading too much data into memory. A typical localisation microscopy 
experiment may involve tens of thousands of images, and hundreds of thousands of localisations, 
which can easily fill Matlab's available memory – and if Matlab runs out of memory it will crash. 
So, we act very defensively and only ever load one image in at a time. If you know a faster, safe 
way to do this then make_features_from_scratch.m should be pretty straight forward to edit.



Once the features are made, they will be saved:

This takes about as long. When it's done you'll see something like this:



This is the labelling window, used to label each localisation. A random set of localisations will be 
selected from those which the algorithm identified, and you will be asked to label each one. We'll 
resize this and look at each part in turn, using colour coding.

 The red box shows the entirety of the image in which the localisation was recorded. The 
actual position of the localisation is shown with a blue dot, and the extent of the pixel patch 
surrounding it is shown with a thin black line. Note that this image uses the log of the pixel 
intensities, rather than their raw values – this prevents bright regions of the image hiding 
dim fluorophores.

 The yellow boxes show the pixel patch. In the top right a surface plot of the pixel patch is 
shown. In the bottom left we see the patch as shown in the current image, and also the same 
patch areas in the images immediately before/after it. 

 The black box contains the buttons you use to label each localisation, as well as the progress
counter (which tells you how many localisations are still remaining to be labelled). The 
options are:
◦ dense – there is a fluorophore present, but there is at least one other fluorophore active 

which is close enough that the localisation is inaccurate. 
◦ background – there are no clearly identifiable fluorophores present. The localisation is 

either due to Poisson background noise, or out of focus fluorescent material.
◦ Accurate – there is exactly one fluorophore present, and you judge the localisation to be 

within acceptable accuracy bounds of it
 The turquoise box gives some other controls you may want to use

◦ skip patch allows you to skip labelling this localisation – you will be moved onto the 
next one and the progress counter will not increase. Please be wary of doing this too 
often. If you skip all the difficult cases, then the classifier will struggle with them too.

◦ Go back a patch – use this if you labelled the last patch incorrectly. You can go back and 
correct it

◦ set color map – the default color map for all the images is Matlab's 'hot' map. If you 
don't like this, though, you can change it to any of the others.



◦ Quit and classify – if you decide you've labelled enough localisations and want to stop 
early, then you can click this. A classifier will be built based solely on the fluorophores 
you've labelled so far.

◦ Quit – quit the labelling and don't build a classifier. This essentially stops the whole 
process. Anything you've labelled so far will be lost, and to restart you'll have to re-run 
START()

How you choose which fluorophores are too dense, which are background and which are accurate 
depends on your data, your microscope setup, the behaviour of your flurorophores, and so on. The 
Random Forest classifier deliberately avoids building in any information about what it thinks 
characterises a 'background' localisation, or an 'accurate' or 'dense' one, beyond the fact it depends 
on the local pixel values and what the images immediately before/after the current image looked 
like, to avoid as much as possible any chance of introducing bias. The penalty we pay for this, 
however, is that it needs you to label quite a lot of samples to get enough information to learn the 
necessary rules.

Some tips if you'd like more guidance on how to classify:
 Try making some computer simulated fluorophores in a V-shaped structure, and the apply 

your localisation algorithm to it. You'll probably find that in your reconstruction the V-shape
will become Y-shaped. This is due to your algorithm making errors when the fluorophores 
are too close together and merging them. Measure this distance on the reconstruction, and 
use it as a first guess as to how far apart fluorophores must be in the real dataset to be 
accurately localised. Depending on the fluorophore brightness, this distance can be 
surprisingly big – I've seen errors creeping in at 600-700nm separation, which is almost 5 
pixels apart.

 Try doing the same as above, but now instead of analysing the V shape using the localisation
algorithm, analyse it by eye yourself. See how far apart you can discern two or more 
fluorophores. There will be some distance below which you'll start to make errors, but so 
long as it's smaller than the distance your localisation algorithm makes errors, the classifier 
will still be useful. 

 So long as you're consistent, it doesn't matter too much how you classify things. I frequently
will classify localisations which appear to be a fluorophore, but which are too dim to 
accurately localise, as 'background'. This helps clear up noise around structures. Other 
people in my group don't do this – their reconstructions look different at the end, but they 
still make sense. 

 You'll probably have to try labelling a couple of sets before you settle on a preferred way to 
classify things. Just save each classifier in a different .mat file as you go, so yo can refer 
back to them.



Personally, I'd say the below localisation should be classified as dense:

But the following might just be accurate:

Once you've finished labelling samples, the classifier will be trained. A progress window will 
appear like this:



And finally, the results are saved in the .mat file whose location you specified earlier:



These results can then be accessed by loading the .mat file, and investigated whatever way you 
want. However, we also include a display function, display_results.m, which will open immediately
.

  
This displays 4 reconstructions of the data. Clockwise from the top left we have the reconstruction 
using all the localisations, the reconstruction using only those localisations classified as 'Accurate',  
the reconstruction using only those localisations where the density is classified as being too high, 
and   those localisations which have been classified as 'background'.

If you have run the test dataset, this is a good time to compare your results to the ones in the paper.  
We have found that initially many people classify dim fluorophores as background, leading to there 
being almost no fluorophores classified as good localisations.

There are 7 buttons on the right hand side. The top one sets the color map, and when clicked opens 
a popup windows.



The default colour map is 'hot', but this data is a little hard to see using that. Let's change it to 'hsv'.

The next button allows you to toggle whether or not the reconstructions show the raw intensities, or 
the log of the raw intensities (with +1 added to prevent log(0) being evaluated). This reduces the 
relative intensity differences between bright and dim regions, and is useful for examining hard to 
see structure, or looking at low level background noise. When clicked it looks like this.



The other method for changing relative brightness is the 5th button down, 'Normalise intensities?'. 
The default display maintains the relative intensities between each reconstruction. As such, the full 
reconstruction will always appear brightest. Clicking 'Normalise intensities?' removes this 
constraint, and allows each image to be normalised to the same brightness range. Let's turn off the 
log intensity scaling, and click this instead:

Set Pixel Upscaling controls the size of pixels used in the reconstruction. When displaying the 
reconstruction, to examine the super resolution detail, it is generally necessary to use a smaller pixel
size than that of the camera used to collect the data. The pixel upscaling value sets the relative size 
of the reconstructed pixels compared to the original pixels. The default value is 5, so a single pixel 
in the reconstruction is 1/5th the size of the original pixels. This can be changed by clicking 'set 
pixel upscaling'



We'll set this to 10 instead, so the reconstructed pixels are smaller.

Examining the images after this, the reconstruction looks a bit pixellated. A more visually pleasing 
result can often by found by blurring the image slightly. This is controlled by the 'Set Gaussian Blur'
button:



All images in this display have at least some Gaussian blur applied. The default standard deviation 
is set at 0.1 pixels (NB this uses the pixel size in the reconstruction, and not the pixel size of the 
original data). This can be changed to increase/reduce the blur. We'll try increasing it slightly, to 
reduce the pixellation



Once you're happy with how the images look, if you wish you can generate a separate figure for 
each. This is done by pressing the 'Pop out images' button. Four new figure windows will be 
created, each one showing one of the four figures in the original display figure.

These can now be saved in the standard way for a Matlab image, e.g. by selecting file > save as and 
then choosing your save location.

To quit, click 'Quit'

If you quit then decide you want to open the display function again, you can simply reload the data 
into Matlab.  This can be done using by typing:
DISPLAY(); 
at the Matlab prompt.  This will return you to the initial display stage of the results.


