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2 Abstract

Since the discovery of colossal magnetoresistance (CMR) in 1994 the manganites have fascinated re-

searchers due to the complexity and sensitivity of their behaviour. Although models were proposed

to explain the main features of the manganite phase diagram shortly after their discovery in 1950 by

Jonken and van Santen, it was not until Chen and Cheong probed the insulating side of the phase

diagram with transmission electron microscopy (TEM) in 1998 that vigorous debate started as to the

microscopic nature of the so-called ‘charge ordered’ phase. Although the nature of the individual phases

of the extremely rich phase diagram of the manganites are still studied intensely, there is also growing

interest in the phenomenon of phase coexistence, and the exotic phases which can arise close to phase

boundaries. The fact that properties so different as ‘charge order’ and ferromagnetism can coexist,

and sometimes occur in one phase, indicates how delicately balanced the factors which drive a material

from one phase to another can be in the manganites.

The work in this dissertation is focused on the insulating side of the La1−xCaxMnO3 and Pr1−xCaxMnO3

phase diagram, in particular on the low temperature ‘charge ordered’ phase. This phase exhibits a su-

perstructure whose periodicity depends on the doping of the sample, among other factors. Firstly the

microscopic nature of the charge ordered phase is probed using a variety of techniques including TEM,

heat capacity measurements and neutron diffraction measurements. Secondly, the charge ordered phase

is controlled via the manipulation of strain. In the first set of experiments, polycrystalline samples are

subject to extrinsic effects, and so although it is possible to observe spatial variations in the superstruc-

ture, it is not possible to systematically control possible causes of the variation. By growing thin films

it was possible to control the level of strain in the film, which is one of the extrinsic effects. This creates

a spatial variation in the superstructure which could be observed. The results of this experiment can

then be used to provide insight into the small scale nature of the charge ordering superstructure.
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3 Introduction

The ability to reduce everything to simple fundamental laws does not imply the ability to

start from those laws and reconstruct the universe.

P. W. Anderson

3.1 Strongly correlated electron systems

Strongly correlated systems are characterised by complexity, meaning that understanding the properties

of their constituent particles is not enough to predict, or even understand, the behaviour of large

aggregates of particles. The strong interaction of many particles can produce emergence, namely the

generation of properties that do not preexist in a system’s constituents. This complexity manifests

itself in transition metal oxides in the many competing states, which are observed to exist in a delicate

balance, and in the spontaneous emergence of electronic nanometer-scale structures which are not

spatially homogenous.

It is not possible to analyse these materials at a large scale by using the simple fundamental laws

which we know to apply to them (as pointed out by P.W. Anderson in the quote above). To analyse or

predict behaviour at a large scale, one can use simple phenomenological models that assume competition

between a few selected states and analyse the consequences of this competition. To obtain a microscopic

model of a strongly correlated system, it is common to use high speed computers to perform unbiased

calculations.

Experimentally, it is important to realise that it is dangerous to extrapolate from large scale mea-

surements down to small scale, since there are often many ‘degenerate’ small scale states which could

all give rise to the same large scale result. Therefore it is necessary to use microscopic techniques to

analyse the patterns which arise from the ordered states in strongly correlated systems, and the subtle

nanoscale phase separation effects. Examples of suitable techniques are scanning tunnelling microscopy

(STM), TEM, neutron scattering and x-ray scattering. Each of these techniques has its own strengths

and weaknesses and it is important to bear the weaknesses in mind when interpreting results. For

example, TEM produces real space images at small scale, but the interpretation of intensities in these

images is fraught with danger; neutron diffraction allows one to refine a model until the best fit to the

data is obtained, but it must be borne in mind that whether or not the final model is close to the real

crystal structure depends on the accuracy of the starting model.

However, by combining techniques it is usually possible to reach a consensus as to what is happening

in these materials (though sometimes the consensus view turns out to be wrong). The behaviour

of manganese perovskites as observed experimentally, the interpretation of these results in terms of
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structural models and theoretical prediction and explanation of these structures will be the subject of

the rest of this chapter.

3.2 The perovskite family

Perovskites are a large family of crystalline ceramics that derive their name from the mineral perovskite

(CaTiO3). Perovskite was discovered in the Ural mountains of Russia in 1839 by the geologist Gustav

Rose, who named it after the famous Russian mineralogist Count Lev Aleksevich von Perovski. The

crystal lattice of perovskite is approximately cubic, though it is actually orthorhombic in symmetry

due to a slight distortion of the structure. The general perovskite structure has the formula ABO3,

and can be thought of as a face centered cubic lattice with a B ion at the centre surrounded by six O

ions, each at a face centre, and eight A ions, each at a corner. Members of the perovskite family all

exhibit a similar structure.

Different distortions from the simple perovskite structure lead to a wide range of physical character-

istics in perovskites, making them important in many areas of research. For example, perovskites are

of great interest to geologists as the perovskite structure of MgSiO3, which forms under high pressure

conditions [1], is thought to make up 70 to 80 % of the lower mantle, or about half the planet’s bulk [2].

Perovskites have also been found to show significant potential for use as materials that may safely

encapsulate radioactive waste and are thus also of interest from an environmental point of view [3, 4].

Perovskites have many useful technological applications as ferroelectrics, catalysts, sensors and

superconductors. For example, BaTiO3, CaTiO3 and SrTiO3 can achieve impressive dielectric con-

stants [5], which makes them suited for use in capacitors. Perovskites in the lead zirconate ti-

tanate family (PZT) have a high piezoelectric response (they generate a voltage when they are sub-

jected to mechanical pressure and conversely undergo a change in dimension when a voltage is ap-

plied) [6]. Piezoelectric ceramics are used in a wide range of products, including communications

equipment, crystal-controlled timing devices, transducers and pressure gauges, and are important in

micro-electromechanical systems (MEMS) [7, 8].

The first superconducting perovskite was discovered by the IBM researchers Berdnorz and Müller,

with a critical temperature of around 35 K, a benchmark in the field at that time [9]. Between 1986 and

1988 the critical temperature for superconductivity in perovskite ceramics was raised by more than 100

K (though since then only a few degrees have been added to this) [10]. This allowed superconductivity

to be induced above 77 K, the boiling point of liquid nitrogen, making it much cheaper to cool the

superconductors to below their critical temperature.

Given that there is such fascinating variety in the perovskite family, why study manganites? Because
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Oxygen ion

Mn ion

RE or AE metal ion

Figure 1: Perovskite unit cell of RE1−xAExMnO3.

they offer a wide variety of phases in a single type of compound, and it is possible to tune between

these phases using a number of different parameters, giving a good testing ground for theories of

strongly correlated systems and mesoscopic phases. Therefore this work focused on the cubic perovskite

manganites, which are described in the next section.

3.3 Cubic perovskite manganites

A cubic perovskite manganite is a crystal containing manganese, oxygen, rare earth and alkaline earth

metal ions in the proportions RE(1−x)AExMnO3, with a cubic unit cell as shown in Figure 1. In 1950

Jonker and van Santen [11] reported the first electrical and magnetic measurements on manganites.

Shortly afterward Zener, Kanamori, Goodenough, de Gennes and others established the basic theoret-

ical framework to describe the observed properties (see references in [12]). The first magnetoresistance

effects in the manganites were discovered in 1954 by Volger [13]. However, there was no technolog-

ical incentive to pursue the work further. Then in 1955 a neutron diffraction study by Wollan and

Koehler [14] probed the magnetic structure and found the first evidence for phase coexistence.

In 1993 Helmholt et al. [15] found magnetoresistance effects of 60%. Then in 1994 the phrase

colossal magnetoresistance (CMR) was coined, when Jin et al. [16] found magnetoresistance effects of

up to 127000% in a strained annealed epitaxial thin film of La0.67Ca0.33MnO3. This result aroused

great interest because there was the suggestion of a technological application. In 1988 the related

giant magnetoresistance (GMR) effect had been discovered [17], and by 1994 was being developed for

computer hard disk read heads (the first GMR read heads were shipped in 1998). It was thought that

manganites could be used instead of GMR materials. The discovery of low field magnetoresistance

by Hwang et al. [18] in 1996 seemed to give these hopes more grounding. However, it became clear

over time that manganites did not offer substantial advantages over GMR materials, so there was no

11



Figure 2: Phase diagram for bulk polycrystalline La1−xCaxMnO3. CAF denotes a canted antiferro-
magnetic phase, FI denotes a ferromagnetic insulator phase, CO denotes a charge ordered phase, FM
denotes a ferromagnetic phase and AF denotes an antiferromagnetic phase. From [19].

financial incentive to develop manganites for such an application.

3.4 Phase diagram for La1−xCaxMnO3

The phase diagram for La1−xCaxMnO3 is extremely rich, and one of the challenges of research in this

area is to understand how such a complex phase diagram emerges from a simple crystal structure.

Many areas of the phase diagram are still debated; there are aspects of even the basic properties of

manganites that are not fully understood.

Figure 2 shows the phase diagram constructed by Cheong and Hwang for polycrystalline La1−xCaxMnO3,

giving the various magnetic and electronic configurations observed as a function of calcium doping. The

diagram is based on their magnetic and resistance measurements [19] and the neutron diffraction work

of Wollan and Koehler [14].

Below is a short summary of the evidence for the phase diagram:

3.4.1 x = 0− 0.08

For x=0, neutron diffraction evidence (Wollan and Koehler [14]) indicates that this is an A type

antiferromagnet (moments are parallel in plane but each plane is antiparallel to the one beneath it).

For x > 0, a small magnetic moment is observed which some attribute to to a homogeneous canted

antiferromagnet [19] though others propose phase separated mix of ferromagnetic and antiferromagnetic
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Figure 3: Phase diagram for bulk polycrystalline La1−xCaxMnO3 0.1 < x < 0.25. O′ denotes an orbital
ordered state, O∗ denotes an orbital disordered state and PMI denotes a paramagnetic insulator phase.
From [22].

regions [20].

3.4.2 x = 0.08− 0.17

Two magnetic anomalies are seen as the specimen is cooled. The first transition is to a ferromagnetic

insulating phase, which is thought to be caused by superexchange (Section 3.7.1) rather than double

exchange. The second anomaly is ascribed to a charge ordering transition. However, charge ordering

does not necessarily involve a magnetic transition, and Joy et al. [21] have proposed that the anomaly

is due to domain wall pinning effects.

More recent work by Van Aken et al. [22] has revised the 0.1 < x < 0.225 section of the phase

diagram and a phase separated region has been found which can be seen in Figure 3. Instead of

ferromagnetic insulator and charge ordered regions, there is a ferromagnetic insulator region and two

paramagnetic regions, one with orbital order and one “orbital disordered”.

3.4.3 x = 0.17− 0.5

Ferromagnetism, caused by double exchange, is observed at low temperatures with a magnetic moment

close to the saturation value. The resistivity falls dramatically as the temperature is reduced through the

magnetic transition. For the x=0.5 sample there were two transitions on cooling, first a ferromagnetic

transition followed by a reduction in moment attributed to the sample becoming antiferromagnetic.
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3.4.4 x = 0.5− 0.88

The charge order transition temperature is taken to be the inflexion point in the magnetisation mea-

sured as a function of temperature. Neutron diffraction work by Radaelli et al. [23] suggests the

antiferromagnet may be canted.

3.4.5 x = 0.88− 1

There is still debate as to whether the low temperature phase is a mixture of ferromagnetic and

antiferromagnetic phases, or a canted antiferromagnet. Wollan and Koehler [14] found x=1 to be a G

type antiferromagnet (where every moment is antiparallel to its nearest neighbours).

3.4.6 Boundaries

The boundaries in Figure 2 are shown as single lines, but many of the boundaries, such as the one at

x = 0.5, should in fact be shown as a mixed phase region. At x = 0.5 regions of “charge ordered” and

ferromagnetic phases have been found in one sample at this composition [24], and a phase which is

both “charge ordered” and ferromagnetic has also been observed [25].

3.5 Crystal structure

As described in Section 3.2 of the introduction, manganites have a cubic perovskite structure in their

high temperature phase, with a primitive cubic unit cell. There is an Mn ion in the centre surrounded

by an octahedron of oxygen ions, and rare or alkaline earth metal ions at the corners of the cube.

As the temperature is lowered the crystal distorts to a lower symmetry, typically rhombahedral or

orthorhombic. The crystal structure of La1−xCaxMnO3 is detailed below, while there is a discussion

of the effect of substituting different cations for La in chapter 5.

3.5.1 La1−xCaxMnO3

Let us consider the endpoints of the series, CaMnO3 and LaMnO3. For CaMnO3, the t2g orbitals are

fully occupied and the eg orbitals are empty. This means that the cubic perovskite structure (Figure 1,

Section 3.2) is stable. The lattice constant is 3.73Å [26].

For LaMnO3 there is one additional electron to populate the two majority eg orbitals, leading

to a Jahn-Teller instability [27] (see Section 3.6). LaMnO3 is found to be in a strongly distorted

orthorhombic form of the perovskite structure [26], The distortion from cubic symmetry has been

ascribed to two causes. The first is the Jahn-Teller instability, which would favour a local tetragonal

distortion of the MnO6 octahedron, which could be repeated periodically in various ways but would not

itself lead to the low Pnma symmetry. The second cause of distortion is steric hindrance - the relative
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Figure 4: The distorted Pnma crystal structure of LaMnO3, giving an impression of the substantial
distortion from the cubic perovskite structure. Small black spheres are Mn, medium spheres are La,
white spheres are O. The region shown is the volume of four perovskite primitive cells. The bounding
box corresponds closely, but not exactly, to the cell boundary. From W.E. Pickett and D.J. Singh [26]

sizes of the ions does not favour a cubic structure. It has been noted, simply on the basis of packing

of spheres [28], that this compound should be noncubic. The sum of the Mn-O layer ionic radii RMn

+ RO do not match the related quantity for the LaO layer (RLa + RO)/
√
2 closely enough to make

the cubic structure stable. This size misfit makes the structure unstable against the rotation of oxygen

octahedra.

LaMnO3 was found by Elemans et al. [29] to be a strongly distorted orthorhombic Pnma structure

(see Figure 4) below Ts ≈875 K with (at low temperature) a =
√
2 × 4.060Å, b = 2 × 3.834Å and

c =
√
2× 3.912Å. Wollan and Koehler [14] found a monoclinic structure, which is closely related to the

orthorhombic Pnma structure.

The Pnma lattice structure can be derived from the perovskite structure in the following way [26]:

1. First rotate an oxygen octahedra around the z axis. Since the octahedra remain connected, the

attached octahedra in the xy plane rotate oppositely, resulting in a
√
2×

√
2 doubling of the cell

(conventionally taken as the ac plane) and a reduction to tetragonal symmetry with b 6= a = c.

2. Tilt an octahedron along the Mn-O-Mn direction in the ac plane, leading to opposite tilting of

the neighbouring layers and thereby resulting in a further doubling of the primitive cell along

the b axis. This leads to orthorhombic symmetry and shortens the lattice along the b axis and

one orthorhombic in-plane lattice constant (taken along the c axis). Since volume tends to be

conserved, the a axis increases.
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Figure 5: (a,b) Conventional picture of Goodenough’s model for the CO/OO state of half-doped man-
ganites. Schematic representation of the refined shifts of atoms in the low temperature phase with
respect to the high temperature phase. The length of the arrows is exaggerated for clarity. The dif-
ferent types of arrows represent different symmetry related shifts. l and s stand for long and short
distances. (c) is the same as (a) but the shifts are described in a non-centrosymmetric space group.
From J. Rodriguez-Carvajal et al. [30].

LaMnO3 has a combination of atomic size mismatch and electronic instability that leads to the

low symmetry structure. However, the dominant driving force is not obvious. For example CaTiO3

(the mineral perovskite) has the same space group symmetry as LaMnO3, but has a nominal Ti4+(d0)

configuration with spherical symmetry, so this distortion can occur without a Jahn-Teller instability.

However, in CaTiO3 the distortion is nearly a pure rotation of the TiO6 octahedra which preserves bond

lengths, while in LaMnO3 the bond lengths change. So the Jahn-Teller distortion is strong, whether

or not it is the driving force. Broadly speaking, rigid movement of the octahedra is caused by steric

hindrance and distortion of the octahedra themselves is caused by the Jahn-Teller effect.

For La1−xCaxMnO3, where both La and Ca are present, the octahedra are rotated by varying

amounts. For x ≥ 0.5, at low temperatures, there is also an octahedral distortion driven by the “charge

ordering” (the Jahn-Teller effect discussed in Section 3.6). An example of the low temperature structure

for x=0.5 is shown in Figure 5.
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Figure 6: Jahn-Teller splitting and associated distortion of the oxygen octahedra for La(1−x)CaxMnO3.

3.6 Charge ordering

3.6.1 Charge order model - 1955

It was thought that whereas the charge distribution in the metallic phase of La1−xCaxMnO3 was

given by La3+
(1−x)Ca

2+
x Mn(3+x)+O2−

3 , in the “charge ordered” phase the fractionally charged Mn ions

separated into Mn3+ and Mn4+, giving La3+
(1−x)Ca

2+
x Mn3+

(1−x)Mn4+
x O2−

3 . This transition was thought to

be driven by the Jahn-Teller effect, which arises from the different distribution of the electron density

around the Mn3+ and Mn4+ ions. An Mn4+ ion has three 3d electrons, in the xy, yz and xz levels, so

the charge density is uniformly distributed around the centre, and the octahedron is symmetric around

the Mn ion. An Mn3+ ion has an extra electron in the 3z2-r2 level, so the electron density is higher

along the z axis elongating the electron along that axis.

When an electron moves from one Mn site to the next, the octahedra change their distortions

because of the change in charge of the Mn ions. Thus an electron will drag a lattice distortion with

it. This combination of electron and lattice distortions is called a polaron. At room temperature the

polarons are mobile (a polaronic liquid), and for some compositions of La1−xCaxMnO3, they remain

mobile at low T.

However, if a compound with a composition in the range 0.5 ≤ x ≤ 0.9 (for La1−xCaxMnO3

polycrystalline samples), is cooled below the transition temperature, the Mn3+ and Mn4+ ions have

been reported to localise at specific sites in the crystal and a polaronic solid is formed. The regular

distortions of the oxygen octahedra increase the size of the unit cell and lower the crystal symmetry.

17



y

x

z

y

x

z
Normal 
mode Q2

Normal 
mode Q1

y

x

z

Figure 7: Geometry of the octahedral complex and degenerate vibrational modes Q1 and Q2.

This change of symmetry can be observed as extra reflections in a diffraction pattern.

3.6.2 Different Jahn-Teller distortions

The Jahn-Teller theorem [31] states that:

Any electronically degenerate system can lower its energy (and is thus intrinsically unstable)

under certain asymmetric distortions of the nuclear framework.

As described in the previous section, the d-states split into a triplet (at a lower energy) and a doublet

(at a higher energy). The eg electron occupies the doublet and undergoes a Jahn-Teller interaction

with the doublet of vibrational modes of the surrounding octahedron. The vibrational modes of the

octahedron can be decomposed into the Q1 and Q2 modes [32] shown in Figure 7. The tetragonal

mode Q1 is dominant, with the tetragonal principal axis taken to be parallel to the longest Mn-O bond

length in the ab plane [33].

3.6.3 Why were charges thought to be localised?

In the 1950s Landau developed his theory of the Fermi liquid [34, 35], which states that at low enough

temperatures the elementary excitations in every conductor will be weakly interacting quasiparticles.

This implies that the properties of the conductors will have generic features, such as the heat capacity

being proportional to the temperature, and indeed the Landau picture had great success in explaining

the properties of elemental metals such as Na. The arguments from which this theory arose were so

general and convincing, that it seemed that these relations should always hold. Nonetheless, more and

more materials were discovered in which these quantities behaved differently. These materials contained

3d or 4f elements, and were often oxides. Hubbard [36] suggested that the electrons in 3d or 4f shells

stay more localised, and hence preserve a strong on-site interaction. This avoids Landau’s argument,

which starts with non-interacting delocalised states that form a Fermi surface, and hence, when the
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interaction is turned on, the particles still have nowhere to be scattered (due to the Pauli principle), and

thus remain weakly interacting. Then Mott [37] (and references therein) proposed that the interactions

can localise charge carriers. He gave a thought experiment in which the atoms in metallic hydrogen

are gradually pulled apart. At some point, the electrons must localise on the individual atoms and the

metallic model is no longer correct. Therefore in the transition metal oxides, a model based on atomic

orbitals seemed to be the logical way to proceed.

3.6.4 Wigner crystal and bistripe models of charge ordering - 1998

In 1998 Chen, Cheong and Hwang [38] proposed a modification to the original model for the charge

ordering superstructure, in which the Mn3+ ions were hypothesised to be located as far apart as possible

in order to minimise the Coulomb repulsion energy. This is similar to the Wigner-crystal arrangement

of charges in low-carrier-density metals. The present case is different from that proposed by Wigner,

because the carrier density is quite high, and also because the electron-electron interaction is only

one of the factors, the lattice energy being at least as important. For example, the stacking of equal

charges along the b axis, which is common to both the models discussed here, is thought to arise from

the need to minimise the lattice strain associated with orbital ordering. Nevertheless, the designation

‘Wigner crystal’ is used for models where the eg electrons are located as far apart as possible within

the ac plane. This original model was subsequently revised by Mori, Chen and Cheong [39] on the

basis of high resolution electron microscopy (HREM) images. In the revised model, Mn3+ ions are

concentrated in 8.25Å wide ‘bi-stripes’. These stripes consist of Mn3+ rich regions alternating with

Mn3+ depleted background regions. The two models are shown for x=2/3 in Figure 12. Evidence from

neutron diffraction [23] and electron diffraction [40] has so far supported the Wigner crystal model.

3.6.5 Random mixture model for charge ordering

It has been suggested [41], on the basis of high resolution images of manganites, that dopings for

which x = (n− 1)/n, n integer, are particularly stable. These dopings produce repeating units such as

Mn3+Mn4+ (x=0.5), Mn3+Mn4+Mn4+ (x=2/3), Mn3+Mn4+Mn4+Mn4+ (x=0.75) etc. It was suggested

that other dopings will try to arrange themselves into these units, with the overall composition being

maintained by forcing the units to be generated on average in the correct ratio. This is called the

random mixture model.

The high resolution images that were the basis for the model are shown in Figure 8. The higher

peaks were thought to be Mn3+, and the lower peaks and the dips were thought to be Mn4+. So, for

example, the unit cell for x=2/3 contained two Mn3+ and four Mn4+. It was thought that the two

different heights of Mn4+ represented Mn4+ ions in two different environments. This is shown in the
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Figure 8: High resolution images of La(1−x)CaxMnO3. Images a and b are linescans from high resolution
images of samples with x=1/2 and x=2/3 respectively. Image c is a high resolution image of a sample
with x=0.71. Image d is a linescan from this image. In the linescans, two peaks of roughly the same
height were interpreted as Mn3+, and the minima between them were interpreted as Mn4+. A smaller
maximum was interpreted as an Mn4+ in a different environment. Based on this, the linscan of x=0.71
was interpreted as a mixture of units of 1/2 and 2/3 charge order. Images from [39].

other images in Figure 8.

3.6.6 Interpreting diffraction patterns

Since results obtained from TEM play an important part in distinguishing different models of charge

ordering, there follows a short discussion of the significance and interpretation of TEM diffraction

patterns and images.

When charge ordering occurs, extra reflections appear in the diffraction pattern. But the inter-

pretation of the diffraction patterns is not trivial, in particular the origin of unexpected reflections.

[001]

[010]

[100]

Figure 9: Orthorhombic (thick lines) and cubic (thin lines) unit cells for La1−xCaxMnO3.
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Figure 10: Twin variants and their diffraction patterns. The thin lines show the cubic unit cell and
the bold lines show possible orientations of the orthorhombic cell. The electron diffraction patterns for
each type of twin are shown. Adapted from [42].

Although the unit cell of La0.5Ca0.5MnO3 is cubic to a good approximation, the true unit cell of the

crystal is orthorhombic, as shown in Figure 9. As can be seen, the orthorhombic unit cell is
√
2 as long

as the cubic unit cell in the ac plane, and twice as long as the cubic unit cell along the b axis. Since

the orthorhombic unit cell is larger than the cubic unit cell, the orthorhombic unit cell causes extra

reflections to appear in the diffraction pattern.

Twinning (see Figure 10) occurs because there is more than one possible orientation of the or-

thorhombic unit cell with respect to the cubic unit cells. Twin boundaries can occur at the point that

the type of twinning in a material changes.

The possible diffraction reflections and their origin are indicated in Figure 11, for an x = 0.5 sample

with a low temperature superstructure. It is important to remember that for x=0.5, the pattern without

superstructure reflections appears the same as the pattern with charge ordered reflections, with a 45◦

rotation and a scale factor.

In fact, if only charge ordering occurred at x=0.5, no extra reflections would appear at all. This is

because the charge ordered unit cell for x=0.5 is the same as the orthorhombic unit cell (see Figure 12).

However, extra reflections do appear in the diffraction pattern because orbital ordering occurs as well

as charge ordering. The orbital ordering causes the unit cell to double its length along the a axis with

respect to the orthorhombic unit cell (see Figure 12). For other compositions the charge ordering unit

cell is the same as the orbital ordering unit cell (Figure 12 shows x=2/3 in the Wigner crystal and

bistripe models - see Section 3.6.4). It is thought that the 3z2-r2 Mn3+ orbitals orient themselves at

right angles to each other in adjacent rows.
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Figure 11: Diffraction pattern showing possible spots due to cubic lattice, orthorhombic lattice and
charge ordering.

3.6.7 Imaging areas of charge ordering - dark field (DF) images and their interpretation

A TEM diffraction pattern contains information from electrons which have passed through the area

of the specimen which is illuminated by the beam. If this area is large and the sample contains more

than one crystal orientation, the diffraction pattern may contain contributions from different zone axes

which can make interpretation of the pattern difficult. To decrease the illuminated area the beam can

either be converged to form a convergent beam electron diffraction (CBED) pattern or an aperture

(the selected area aperture) can be inserted above the specimen. Converging the beam destroys any

parallelism, and spots in the pattern are not sharply defined but are spread into discs. Nevertheless,

this method is useful if a diffraction pattern from a very small area of the specimen is required.

No matter what kind of specimen is observed, the selected area diffraction (SAD) pattern will

contain a bright central spot which contains the information from direct electrons and some scattered

electrons. In the transmission electron microscope (TEM), images are either formed using the central

spot, or using some or all of the scattered electrons. Electrons are chosen to form the image by inserting

an aperture into the back focal plane of the objective lens, thus blocking out most of the diffraction

pattern except that which is visible through the aperture. The aperture can be moved so that either the
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Figure 12: Orbital ordering. (a) shows orbital ordering arrangement for x=0.5, (b) shows orbital
ordering arrangement for x=2/3 in the bistripe model and (c) shows orbital ordering arrangement for
x=2/3 in the Wigner crystal model.

direct electrons or some scattered electrons pass through it. If the direct beam is selected, a bright-field

(BF) image is formed, and if scattered electrons are selected, it is called a dark-field (DF) image [43].

In a BF image contrast is increased and structures such as bend contours can be seen more clearly.

An example of a dark field image would be an image formed from a beam which is due to charge

order. The image would then show the areas of the sample which are charge ordered. If two charge

ordering twins are present, images of which areas are charge ordered with which twin can be formed,

as is demonstrated in Section 6.5.

3.6.8 Charge order stripes - HREM and its problems

High resolution electron microscopy (HREM) images are used to look at materials on a very small scale

(with some microscopes it is possible to reach atomic resolution). They are a very powerful tool, but

extreme caution must be used when interpreting them, for a variety of reasons.

Contrast is produced in HREM images by the presence of different atoms. It is tempting to try to

interpret the images in terms of which atoms are present. However, there are many other effects to take

into account. Changes in thickness and changes in orientation can also produce contrast. Changes in

focus can reverse the contrast (e.g. black-white-black could change to white-black-white). So it is not

possible to identify a particular intensity with a particular atom. In addition, it is important to know

the resolution, since an image with higher resolution does not simply show more detail; the structure

may look completely different.

Only images from very thin (<5 nm) crystals can be interpreted directly, and even for these,
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Figure 13: Different models of charge and orbital order. (a) shows the chequerboard arrangement
originally proposed by Goodenough [27]. (b) shows an alternative orbital order, which implies incom-
plete occupancy of the oxygen 2p shell [44]. (c) shows the Zener polaron model [45]. Figure from M.
Coey [46].

interpretation can be problematic. To image charge ordered stripes much thicker crystals (20-50 nm

thick) are used as dynamical diffraction makes the superlattice reflections more intense, and so the

stripes are more easily seen. A direct interpretation of the image is therefore almost impossible. Only

the periodicity of the image remains unchanged.

3.6.9 Resistance measurements - detection of charge ordering in bulk

It is also possible to detect signatures of charge ordering in bulk. A charge order transition can be

observed in a resistance temperature curve as a slight kink at the transition temperature.

3.6.10 Recent work in the field

In addition to the Wigner crystal and bistripe model, Daoud-Aladine et al. have proposed an alternative

model, called Zener polaron ordering (ZPO) based on their study of single crystal Pr0.6Ca0.4MnO3 [30,

45, 47]. They find that the oxygen octahedra have very similar bond lengths and cannot be viewed as

an elongated Mn3+ octahedron and a relatively cubic Mn4+ octahedron, instead pairs of Mn3+ cations

share a ‘hole’ on a bridging O− ion (see Figure 13). The charge transfer is estimated to be around

(1/350)e, based on bond valence sums which correlate bond lengths with charge separation. Other

results have suggested that ZPO or CO ground states occur in 50% doped manganites for different values

of the perovskite tolerance factor [48], or combine to form intermediate states for 0.4 < x < 0.5 [49].

Note that in contrast to manganites with x > 1/2, manganites which charge order when x < 1/2,

such as (Pr,Ca)MnO3 [50] and (La,Pr,Ca)MnO3 [24], always show a wavevector q = a∗/2, irrespective

of doping, which is difficult to explain if the low temperature superstructure is created by an ordering

of Mn3+ and Mn4+ ions. The interesting exception to this rule was found by Asaka et al. [50], who
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observed two charge ordering modulations in Pr5/8Ca3/8MnO3. One is the usual q1/a∗ = (1/2,0,0) the

other q2/a∗ = (1/4,1/4,1/4). This phenomenon does not seem to have been observed at compositions

other than x = 3/8.

An argument against the CO/OO picture and for the ZPO picture is the similar values of the two

Mn moments [51], which suggest that the eg electron is localised over two Mn ions as in the ZPO

model. However, this can also be interpreted as being linked to incommensurability in the charge-

ordered state [52, 53]. It has been suggested that at domain boundaries in the Mn3+ sublattice the

moment direction flips across the magnetic domain boundary, resulting in the refined moment value of

the Mn3+ ion averaging out to a lower value [52].

A number of studies have supported the Wigner crystal charge ordered picture over the ZPO pic-

ture [51, 54, 55], though different orbital ordering arrangements have been suggested (see Figure 13) [44].

However, these studies agree that the difference in charge between Mn ions, as calculated from bond

valence sums is small e.g. 0.25e in Pr0.5Ca0.5MnO3. Similar values are found for other compounds with

different types of magnetic couplings, indicating that the small charge separation in manganites is a

generic feature of symmetry broken transition metal oxides, and is not indicative of special manganite

physics such as Mn3+ orbital order [54].

There are several experiments that present contradictory results for the local electronic structure

in manganites. Some of them claim a mixed valence picture of Mn3+ and Mn4+ while others found

features which cannot be reconciled with this model. For example, a study of oxygen K-edge EELS

spectra concluded that carriers in La1−xCaxMnO3 (0 ≤ x ≤ 0.7) have a significant oxygen-p hole

character [56]. Also, some X-ray absorption studies at the Mn K-edge in Ca doped LaMnO3 revealed

a picture that does not match up with a mixture of Mn3+ and Mn4+ for intermediate dopings [57–61].

However, Tyson et al. [62] performed an Mn Kβ X-ray emission experiment on the same compound

and found that their data was compatible with an Mn3+/Mn4+ mixing for intermediate compositions.

Similar contradictions have been found using photoemission and X-ray spectroscopy techniques [63].

It should be noted that Campbell et al. [64] have observed diffuse superlattice reflections using x-ray

diffraction in the layered compound La1.2Sr1.8Mn2O7. Unlike the long range charge ordering investi-

gated here, this compound is metallic at low temperatures but shows short range polaron correlations.

Although broad, the superlattice peaks are too narrow to be explained as a mixture of commensurate

regions and the authors suggest that the modulation is due to a smoothly varying, short range charge

density wave. This wave involves a longitudinal displacement of the atoms rather than the transverse

wave seen in long range charge ordered materials. Nagai et al. [65] have postulated a charge-orbital

density wave in the layered manganite Nd1−xCa1+xMnO3 on the basis of an observation of a transverse
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sinusoidal wave in HREM images.

The simple picture of CO has been further challenged by Ferrari et al. [66], who find that the

ordering is better described as a charge-density wave of oxygen holes, coupled to the Mn spin/orbital

order. Milward et al. [67] have also argued against a localised picture on the basis of a phenomenological

Ginzburg-Landau theory, and argue for a reinterpretation of the low temperature superstructure in a

charge density wave picture.

3.7 Magnetic ordering

Two types of magnetic exchange interaction are possible in La1−xCaxMnO3: superexchange and double

exchange.

3.7.1 Superexchange

Superexchange involves the Mn orbitals and oxygen orbitals which point towards each other. If there

are two orbitals on adjacent ions pointing towards each other, one of which is full and one of which is

empty, then the electron will spend a short part of its time in the empty orbital. In superexchange it

is always an electron on an O2− ion which spends a short time on an Mn ion. If it is an Mn4+ then

the spins of the other electrons in the d shell will line up parallel to the electron from the O2− which

spends a short time on it (Hund’s rule). If the ion is an Mn3+ then the electron in the outer shell must

align antiparallel to the electron from the O2− due to Pauli’s exclusion principle. The other electrons

is the d shell will align parallel to the electron in the outer shell (Hund’s rule). From the diagram, it

can be seen that these interactions give rise to the following rules:

1. Two empty Mn orbitals pointing towards each other will result in antiferromagnetic alignment.

2. Two half full Mn orbitals pointing towards each other will result in antiferromagnetic alignment.

3. An empty Mn orbital pointing towards a half full Mn orbital will result in ferromagnetic alignment.

3.7.2 Double exchange

Double exchange is caused by the transfer (real, not virtual) of an electron from an Mn3+ ion to the

neighbouring O2− ion. This causes an electron of the same spin to move from the O2− to one of the six

nearest, since the O2− orbital can only hold two electrons and they must have opposite spin (Pauli’s

exclusion principle). This results in ferromagnetic alignment. Double exchange works best for transfers

between Mn3+ and Mn4+ (see Figure 15).
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Figure 14: Superexchange.
The orbitals involved in superexchange are those for which the overlap between orbitals on adjacent
ions is greatest. In this case, these are the eg orbitals on the manganese and the p orbitals on the
oxygen ions. The ovals represent one of the orbitals for each ion and the solid arrows show the position
and spin state of the electrons. The dotted lines indicate a ‘virtual’ transfer of an electron. This means
that the electron has a high probability of being found at the position from which the arrow points and
a low probability of being found at the position to which the arrow points.
(a) The electrons from the dt2g orbitals on the manganese align from the virtual electron from the
oxygen (Hund’s rules). This means that the spins of the electrons on the two manganese sites point
in opposite directions. So if two empty orbitals are pointing towards each other, the coupling will be
antiferromagnetic.
(b) The electron in the eg orbital must align antiparallel to the virtual electron from the oxygen
(Pauli’s exclusion principle). The t2g electrons align with the eg electron which spends all its time
on the manganese ion (Hund’s rules). So if two half full orbitals are pointing towards each other, the
coupling will be antiferromagnetic.
(c) This is a combination of the two effects described above. On one manganese ion the electrons align
with the electron which is permanently in the eg orbital. On the other they align with the virtual
electron. So a half full orbital pointing towards an empty orbital produces ferromagnetic coupling.
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Figure 15: Double exchange - this is the result of an electron from an Mn3+ ion hopping to a neigh-
bouring Mn4+ via the intervening oxygen. Double exchange results in ferromagnetic alignment.
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Figure 16: Orbital and spin structures for (a) LaMnO3, (b) CaMnO3, (c) La0.5Ca0.5MnO3.
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3.7.3 Antiferromagnetic structures

Antiferromagnetic structures in (La,Ca)MnO3 were first observed by Wollan and Koehler [14] and later

by Radaelli et al. [23]. Goodenough proposed an explanation, based on superexchange, of the structures

observed in the early experiments in 1955.

In CaMnO3, all of the outermost Mn orbitals are empty. So rule one will always apply, and all

nearest neighbour spins will be antiparallel as shown in Figure 16 (G type antiferromagnetism).

In LaMnO3 the half filled eg orbital can point in one of two directions. Goodenough reasoned

that when the orbitals point towards one another the Mn ions will be furthest apart due to Coulomb

repulsion and when they are at right angles the distance between the Mn ions will be shortest. He

therefore put neighbouring Mn orbitals at right angles to one another to minimise the strain in the

lattice as shown in Figure 16. This means that within a layer rule three will apply, and between layers

rule one applies. This gives planes of aligned spins (A type antiferromagnet).

La0.5Ca0.5MnO3 is a more complicated case. The orbitals can be oriented along two directions and

the Mn3+ ions can be located on different Mn sites. Goodenough’s structure minimises lattice strain

and Coulomb repulsion using the following rules:

1. Spread the two types of charge as widely as possible in the (010) plane.

2. Alternate the directions of the half filled Mn3+ orbital in the [101] and [101] directions to minimise

strain.

3. The next plane up should have the same bond ordering (and thus the same charge arrangement)

so that interplanar bonds are not stretched. The spins in this plane are reversed with respect to

the plane below.

This structure has planes of Mn ions of the same charge along both of the orthorhombic [100] and

[001] directions (charge ordering) as shown in Figure 16.

If the principles described above are applied to other compounds e.g. La0.25Ca0.75MnO3, then the

system is frustrated. An explanation is possible which avoids frustrated bonds, but it does not produce

the periodicities seen in experiment. Radaelli et al. [23], using evidence from their neutron diffraction

experiment, proposed a canted antiferromagnetic structure.

The canted antiferromagnetic structure can also be reproduced by putting the rules set out above

in place for a given system, say La0.25Ca0.75MnO3, and then letting the system evolve to its ground

state using the appropriate damped equations of motion. This a canted antiferromagnetic structure,

as observed by Radaelli et al..
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3.7.4 Colossal magnetoresistance

Colossal magnetoresistance (CMR) means that over a particular range of temperatures, there is a big

decrease in resistance when a sufficiently large magnetic field is applied, as shown in Figure 17. Initially

it was thought that this effect was due to double exchange, although double exchange predicted a much

smaller effect than that observed. In 1995 Millis et al. [68] showed that double exchange does not

reproduce the observed Curie temperature or the temperature dependence of the resistivity.

The other interactions that are expected in the manganites include the electron-lattice interaction,

the antiferromagnetic superexchange interaction between the t2g local spins, and intersite exchange

interactions among the eg electrons. These interactions occasionally compete with the ferromagnetic

double exchange interaction, producing complex electronic phases and the colossal response of the

system to an external field.

There are two possible measures of the magnetoresistance MR:

MR =
R0 − RH

R0
and MR =

R0 − RH

RH
, (1)

where R0 is the resistivity measured in zero applied field and RH is the resistivity measured in an

applied field H.

When MR is well below 100%, the two give very similar answers. But when the magnetoresistance

is high, the answers diverge.

The largest CMR effects occur because of melting of the charge ordered state. This produces

a particularly large effect because the localisation of charges in the charge ordered state means the

material has a higher resistance. Melting of the charge ordered phase can cause the resistance to drop

by up to 1012% (using the second definition).

Low field magnetoresistance occurs when there are domains within a ferromagnetic metal. When

the domains within the ferromagnet are aligned, the resistance drops.

3.8 Phase separation and coexistence

In a crystal one would normally expect one set of external conditions to overwhelmingly favour one

phase, but in manganites the different phases are delicately balanced because the magnetic, electronic

and crystal structures interact strongly with one another. The balance can be tipped in favour of one

phase or another by altering the chemical composition, microstructure, or strain state of the sample,

by applying a magnetic or electric field, or by illuminating it with electromagnetic radiation [70].

This delicate balance of phases means that the small variations in conditions within a crystal can be

enough to give rise to phase coexistence. In the manganites phase coexistence occurs continuously
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Figure 17: Colossal magnetoresistance. From [69].

from macroscopic down to nanometer length scales. The first evidence for phase coexistence was found

using neutron scattering by Wollan and Koehler in the 1950s [14], but recently it has become possible

possible to image the texture of these coexisting phases at submicron length scales using TEM, scanning

tunnelling microscopy (STM) and magnetic force microscopy (MFM).

The thermodynamically stable phase that forms under a given set of conditions depends on the

relative strength of double exchange (see Section 3.7.2) and the Jahn-Teller effect (see Section 3.6.2).

Mesoscopic texture and mixed phases appear near first order boundaries between the different phases

which, since they involve relatively small modifications of the local arrangement of atoms, can coexist

within a single crystal. Why does phase coexistence occur over such a wide range of conditions in

manganites? The reasons are still debated, but a partial explanation is that since manganites are

strongly correlated electron systems near the metal-insulator transition (the Mott transition), the

forces of localisation and delocalisation are finely balanced.

It is important to consider whether a system is in true equilibrium. If it is not, kinetic effects may

prevent the attainment of equilibrium and create a metastable balance, or inhomogeneities and disorder

may pin different phases in different regions of the crystal. Levy et al. have found relaxation of electrical

resistance in a polycrystalline sample [71]. Application of a magnetic field speeded up the relaxation

process. They were able to demonstrate that a true equilibrium state exists in the manganites, and

that this state can be overshot.

The variables which are usually considered to influence phase texture and coexistence are elastic

strain, microstructure and chemical composition. However, it is difficult to monitor the chemical

composition locally. In studies of polycrystalline materials, such as those of Uehara et al. in which

submicron patches were imaged using dark field TEM [24], or that of Loudon et al. which identified
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the CO-FM phase using TEM by explicitly imaging FM areas using electron holography [25], it seems

likely that strain fields determine the patterns observed.

The effect of the microstructure of a thin film was probed by Fath et al., who used scanning

tunnelling microscopy (STM) to image the insulating and metallic regions of a manganite thin film [72].

They were able to demonstrate that the microstructure of a thin film can prevent the FMM phase from

forming homogeneously. Renner et al. combined STM spectroscopy and atomic resolution imaging

examine a manganite above its bulk transition temperature [73]. Surface areas were found with a

periodic microstructure and a semiconducting gap, which was assumed to be charge ordered. Other

regions were found which lacked a superstructure and were metallic, and were thus inferred to be FM.

De Lozanne et al. were able to image and track FM patches in a manganite thin film with magnetic force

microscopy (MFM). These patches formed and deformed surprisingly easily and moved with unexpected

mobility. Soh et al. demonstrated the link between strain and local physics in the manganites by

mapping the grain boundary of a FMM thin film with MFM and X-ray microdiffraction [74, 75]. A

correlation was observed between the change in lattice distortion as the grain boundary was approached

and the local Curie temperature.
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4 Locally incommensurate superstructure in cubic manganites

The results described in this section arose through discussions with J.C. Loudon, and the ideas were

developed with the help of N.D. Mathur, P.A. Midgley, P.B. Littlewood and J.P. Attfield. The exper-

iments described in this section were performed by J.C. Loudon with the samples being provided by

A.J. Williams, and the simulations were performed by the author.

4.1 Introduction

As described in Section 3.6, the formation of the superstructure in the so-called ‘charge ordered’ phase

was thought to be driven by the Jahn-Teller effect in an environment with strong electron-phonon

coupling. In this strong-coupling picture the charge would be localised on the crystal lattice (although

it should be noted that there would be a very high energy cost for complete charge disproportionation).

Thus the traditional model for the stripe phase arose, in which each ‘stripe’ contains one of two Mn

species, commonly referred to as the idealised cations Mn3+ and Mn4+, which would be present in the

ratio 1 − x : x for the system to remain charge neutral. These ‘stripes’ were thought to arise from

each Mn species being localised in a (200) (orthorhombic) plane, which when viewed in cross section

appeared as stripes. The Mn4+ ions are surrounded by undistorted oxygen octahedra, and the Mn3+O6

octahedra are distorted by the Jahn-Teller effect. However, as discussed in Section 3.6, there is now

experimental and theoretical evidence to suggest that Coulombically expensive variations in valence

are small in the modulated manganites.

The wavevector of the La1−xCaxMnO3 superstructure q is parallel to a∗, and the magnitude of

the wavevector varies approximately as q/a∗ ≈ 1 − x. As discussed in Section 3.6.5, it was thought

that that ‘commensurate’ compositions with a La:Ca ratio of 1:n (n integer), for which the expected

superstructure period is an integer multiple of the parent lattice parameter, are particularly stable [41].

It should be noted, however, that there are limitations to the accuracy with which samples can be made

and it is not possible to guarantee that a nominally ‘commensurate’ sample does not deviate from the

desired composition. The models proposed for the low temperature superstructure have been primarily

based on studies of these compositions, and the question of what occurs when the expected periodicity

of the superstructure is not naturally locked in to the lattice has seldom been raised.

The exception is the study of Chen et al. [41], who proposed that at non-commensurate compositions

there is a random mixture of the repeating units of the superstructures (hereafter termed sub-units) of

the nearest neighbour commensurate compositions. These sub-units are present in the correct ratio to

produce the correct average modulation, e.g. for La3/8Ca5/8MnO3, x = 1/2 and x = 2/3 type sub-units

are present in the ratio 1:3. Thus it is only the average periodicity of the superstructure that is the
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expected value, at a local level there are fluctuations in periodicity. This is the random mixture model

as described in Section 3.6.5.

However, the evidence for the local structure being composed of two Mn species comes from contrast

in HREM images [38, 39, 41, 76] and interference fringes in dark field images [77]. The problems with

direct interpretation of HREM image contrast were discussed in Section 3.6.8. The interference fringes

in dark field images do not represent a real space phenomenon, since they arise from the interference

of two superlattice reflections (as described in Section 4.11).

4.2 Simple simulation - development

Computer simulations were performed to test the random mixture model by simulating arbitrary com-

positions of La1−xCaxMnO3 (x ≥ 0.5) as random mixtures of integer period sub-units, weighted to

produce the correct average composition. To simulate diffraction patterns, power spectra were taken

using standard Fast Fourier Transforms.

An “integer period” commensurate composition is defined as a composition for which x = (n−1)/n,

with n an integer. The first simulation used simple, schematic models based on high resolution images

taken by Chen et al. [39]. Models for the commensurate compositions 1/2, 2/3, and 3/4 were constructed

using delta functions of heights h1 and h2 for Mn3+ in the two possible orbital orientations, and a point

at zero for an Mn4+ ion. For a given non-integer period composition, a random mixture of the two

nearest neighbour commensurate compositions was constructed. The random mixture was weighted

according to the lever rule to ensure that the average composition was correct.

The program was written in C and used the Fast Fourier transform fftw [78], which was chosen for

its speed (Fourier transforms from the SEMPER and Matlab packages were used to check the accuracy

of the calculation). The program calculated the power spectral density from the Fourier transform of

the array of sub-units, and then smoothed the results with a Gaussian smoothing function, to decrease

the noise in the results when measuring such quantities as the position of peaks. The power spectral

density corresponds to the diffraction pattern, though it does not take the effect of dynamical diffraction

(inelastic scattering of the electrons) into account.

The effect on the power spectral density of smoothing with different widths of Gaussian was found

by calculating the positions and widths of the peaks in the power spectral density for different widths

of the Gaussian smoothing function. A Gaussian smoothing function with a standard deviation of 0.4%

of the length of the array was found to be suitable as it produced results with negligible amounts of

noise.
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4.2.1 Finding the peak positions and widths

The peak position was found by taking three points and checking if the middle point was the highest.

The value of the power spectral density at point y was compared to the values at y + 1 and y − 1,

and also to the values at y + 5 and y − 5. This was done to prevent the system identifying to a local

maximum. For the final data sets, the results of 200 program runs were averaged, in order to minimise

the errors.

There was a difficulty in calculating the FWHM of the peaks, since quite often two peaks were

joined together. If the peak was less than halfway along the reciprocal unit cell the program found the

half width at half maximum from the centre of the peak to the left, and if the peak was more than

halfway along the reciprocal unit cell the program found the half width at half maximum from the

centre of the peak to the right. This value was then doubled to determine the FWHM.

4.2.2 Varying peak heights

The relative heights of the peaks were varied to gauge the effect on the results. The results did change

slightly, but not so as to bring the variation of peak position with composition close to 1 − x (the

expected relationship for q/a∗, or to substantially decrease the change in width with composition. This

indicated that in any model with sub-units of the same periodicity, the results would be substantially

the same.

4.3 Simulation based more closely on HREM images

The simulations were then repeated using a model more closely based on the high resolution images

taken by Chen et al. [39](see Figure 18). The image was sampled at regular points and the end points

were adjusted so that the composite image would be periodic. One period of the modulation at each of

the doping levels x = 1/2, 2/3, 3/4 was created from sub-units based on linescans from high resolution

micrographs [38, 41, 76] adjusted so that the endpoints of each sub-unit matched up. This model

produced similar results to the simple model, which is unsurprising as it has the same periodicity.

However, it verifies that it is not a subtlety in the HREM images that leads to a disagreement between

the model and the data. Using HREM images to create the sub-units offered the possibility of comparing

the results of the simulations directly to experimental data.

4.3.1 Size of array

The size of array necessary to produce results which were consistent from run to run was investigated

by running the simulation 200 times and finding the standard deviation of the positions of the peaks.
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Figure 18: Sub-units used in simulation, based on images in [39].
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Figure 19: Variation of the standard deviation of the measured position of the first superlattice peak
with the number of sub-units in array. Composition x=0.52. Arrow indicates value observed experi-
mentally.

The results were compared to the intragranular variation of the wavevector, the measurement of which

will be described in Section 4.11. The standard deviation in the peak position for various sizes of array

(shown in Figure 19) was compared to the experimental value of 0.0035a∗. The experimental value of

the standard deviation was obtained in the simulations using an array of 200000 sub-units, which is

426000 unit cells. This would correspond to using an aperture 20 µm in diameter to obtain a diffraction

pattern in an experiment. However, in real TEM experiments such an aperture would generally have

a diameter of 2 µm or less. The high level of variability from run to run for small arrays of sub-units

is due to the random nature of the model.
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4.4 Experiment

4.4.1 Sample preparation

Polycrystalline samples were prepared by A.J. Williams. La2O3, CaCO3 and MnO2 were used in

stoichiometric proportions to obtain the desired composition of La1−xCaxMnO3 for each sample. It

was necessary to heat the La2O3 overnight before it was used in order to dehydrate it. The La2O3,

CaCO3 and MnO2 were repeatedly ground, pressed and sintered. Firstly the sample was heated at

950oC for 12 hours (in order to decarboxylate the CaCO3), then at then 1350oC for 12 hours. The

sample was then heated at 1350oC for 4 days and at 1300oC for 2 days, and was reground and repelleted

between each stage. The macroscopic stoichiometry of the samples is accurate to within 0.1%. The

presence of a single phase was confirmed by X-ray powder diffraction, and the grain size was found to

be ∼2 µm.

In order to prepare the sample for TEM, it was necessary to thin an area of the sample to electron

transparency (< 200 nm). Conventional mechanical polishing and argon-ion milling at liquid nitrogen

temperatures were used to create an area of the sample with a thickness of around 100 nm.

4.4.2 Electron diffraction patterns

Diffraction patterns were taken by J.C. Loudon using a Philips CM30 TEM. In order to prepare the

sample for TEM, it was necessary to thin an area of the sample to electron transparency (< 200 nm).

Conventional mechanical polishing and argon-ion milling at liquid nitrogen temperatures were used

to create an area of the sample with a thickness of around 100 nm. The sample was cooled to a

nominal base temperature of 90 K using a liquid nitrogen stage. In this stage, the rod which holds

the sample, and is inserted into the microscope, is cooled by a reservoir of nitrogen. Exposure times

ranged between 2 and 10 seconds, with a selected area aperture of 500 nm. The diffraction patterns are

shown in Figure 20. In most cases q was observed to be parallel to a∗, though small deviations were

sometimes seen [40, 79]. Large area diffraction patterns showed q to obey the expected relationship

q/a∗ ≈ 1− x.
Since the variation of q with temperature is weak at 90 K, and since the expected relationship

q/a∗ ≈ 1 − x holds, a lock-in transition below the base temperature of 90 K seems unlikely. The

intragranular variation of q/a∗ is less than 1%, but intergranular variations of up to 9% have been

observed which could be due to strain, surface tension or intrinsic effects.
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Figure 20: Diffraction patterns for various compositions taken at 90 K. For (c) the indexing refers to
only one of the twins. Data taken by J.C. Loudon.

38



0

1

2

3

4

5

6

7

8

0 0.2 0.4 0.6 0.8 1

Reciprocal lattice vector as a fraction of a*

0.502
0.522
0.542
0.562
0.582
0.602
0.622
0.642
0.667

In
te

ns
ity

 (
ar

bi
tr

ar
y 

un
its

)

Figure 21: Power spectra obtained from simulations for different compositions.

4.5 Comparison of simulated results and SAD patterns

The power spectra obtained for simulations of different compositions are shown in Figure 21. The

dependence of the superlattice peak position on the composition for simulation and experiment is

shown in Figure 22, which also includes the much-quoted nominal relationship q/a∗ = 1− x. However,

as can be seem from that graph, it would be better to write q/a∗ ≤ 1−x. This large spread in q means

that nothing can be deduced from the positions of the power spectra peaks for x > 0.55. However,

for 0.5 < x < 0.55 the power spectra peaks have positions such that q/a∗ > 1− x, a relation which is

never observed experimentally in this compound and which may thus be taken as evidence against the

random mixture model.

The dependence of the superlattice peak width on the composition for simulation and experiment

was then investigated. Linescans were taken from unsaturated areas of the patterns shown in Figure 20a-

d. The background of the linescans was modelled using a quadratic equation. This was fitted using

RANSAC, and was then removed. Simulations of a corresponding size were carried out (see Figure

23). The heights of the modulation peaks were normalised to the experimental modulation peaks. The

simulated height of the second modulation peak is much lower than the experimental height, since this

peak is strongly enhanced by dynamical diffraction.

The width of the smoothing Gaussian was chosen so that at x = 0.5, the width of the simulation

peak matched the width of the experimental peak. As a verification of this, the width of the simulation
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Figure 22: Position of the superlattice peak in the simulation compared to the expected relationship
q = 1 − x and to experimental data. Data in set 1 is taken from [80], data in set 2 is taken from [41]
and data in set 3 is taken from [81].

peak was found to match the width of the experimental peak at the next commensurate composition,

x = 0.67. However, for the two intermediate compositions, the simulated peaks were much broader

than the experimental peaks (see Figure 23b, c). Therefore large area diffraction patterns cannot

be reconciled with a picture in which intermediate dopings are represented as random mixtures of

end-member sub-units.

4.6 The effect of different sub-units

It has been noted by Wang et al. [83] that the repeating unit observed varies spatially, which given the

fact that contrast in an HREM image can be affected by changes in thickness, focus, orientation and

by dynamical diffraction (as outlined in Section 3.6.8), is not surprising. In order to examine whether

such variation in the sub-units would lead to a substantial change in the power spectra, four different

sub-units for x = 2/3 were constructed from HREM images in [83] as shown in Figure 24a–d, with

sub-unit (a) being the same as that shown in Figure 18. The position and width of the first superlattice

peak was calculated for a random mixture model (with the x = 0.5 sub-unit shown in Figure 18). As

can be seen in Figure 24, the results from sub-units (a), (b) and (d) agree well; the results from sub-

unit (c) show a greater deviation from a straight line when plotting peak position against composition,

and a wider peak at certain compositions (Figure 24f). Since (as will be discussed more fully later)
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Figure 23: Electron diffraction patterns taken by J.C. Loudon (least saturated areas) and the corre-
sponding linescans (solid lines) for La(1−x)CaxMnO3 with x= (a) 0.5, (b) 0.52, (c) 0.58 and (d) 0.67
taken with a selected area aperture of diameter 200 nm at 90 K looking down the [010] zone axis. The
superlattice peaks are always sharp. By contrast, simulations (dotted lines) that are based on x = 1/2
and x = 2/3 type sub-units [39] show broad superlattice peaks when there is a random mixture at
intermediate dopings (b and c). Note that absolute values of q at intermediate dopings are subject to
the details of the model, and that extrinsic effects including multiple scattering enhance the second
superlattice peak in (b–d). Figure from [82].
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experiments indicate a linear relationship between peak position and composition and no variation of

peak width with composition, the results for sub-unit (c) show a greater deviation from the expected

relationships than the results for (a), (b) and (d). Thus it does not appear that changing details in the

sub-units leads to a better agreement with the data than that given by sub-unit (a).

4.7 Comparison of simulations and high resolution image

The most rigorous test of the random mixture model is to investigate the modulation at very small

scales and the most direct way to do this is to take an HREM image. However, it should be noted that,

as discussed in Section 3.6.8, there are many possible origins for contrast in HREM images, making it

dangerous to directly interpret anything except the periodicities. In an HREM image, one would see

small areas with different commensurate periods if the random mixture model were correct. Figure 25a

shows a portion of a high resolution image taken at 90 K by J.C. Loudon, where the modulation is

clearly visible. Figure 20e shows a diffraction pattern taken in the same area by J.C. Loudon using an

aperture of diameter 100 nm which reveals the wavevector of the modulation to be q/a∗ = (0.27 cos 1.9o,

0, 027 sin 1.9o). Thus q/a∗ = 0.27, giving 1− q/a∗ = 0.73 which agrees with the nominal composition,

x = 0.71, within experimental error. It can also be seen that second harmonic wave vectors are present

in the diffraction pattern, also seen in Figure 20e, which lie at exactly twice the wavevector of the

fundamental.

Virtual diffraction patterns were taken from very small regions of the specimen such as those circled

in Figure 25a (22 nm corresponds to 40 room temperature unit cells) by computing power spectra

from high resolution images. Figure 25d shows linescans along [100] for 5 of these power spectra and

it can be seen that q/a∗ = 0.27 in each case. The variation in intensity in the peak is due to small

changes in thickness and tilt across the specimen. In contrast, power spectra simulations from five 40

cell regions based on the random mixture model show considerable variability (Figure 25e). This is

expected, because with the small number of sub-units used, there is a greater probability of a straight

run of 2/3 or 3/4 type sub-units and thus there is a greater variability from run to run. Therefore the

random mixture model of charge order does not match the experimental results at the scale of a few

tens of unit cells.

4.8 CBED - experiment

Convergent beam electron diffraction (CBED) patterns (see Section 3.6.7) can be used to probe the

nature of the low temperature superstructure at extremely small scales. Figure 26 shows CBED and

selected area diffraction (SAD) patterns taken by J.C. Loudon from a sample with nominal composition
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Figure 24: Showing how the position and the width of the first superlattice peak varies with the type
of HREM sub-unit used. a,b,c and d show different sub-units for x = 2/3 based on images in [83].
Arrays of different average composition were constructed using the x = 1/2 sub-unit shown in Figure 18
and one of the x = 2/3 sub-units a,b,c or d. Thus four arrays were constructed for each composition.
The variation of the position of the first superlattice peak with composition is shown in e for arrays
using each of the four x = 2/3 sub-units. The variation of the width of the first superlattice peak with
composition is shown in f for arrays using each of the four x = 2/3 sub-units.

43



Figure 25: (a) High resolution image from La0.29Ca0.71MnO3 at 90 K. (b) Electron diffraction pattern
taken using a 100 nm selected area aperture. (c) Essentially identical pattern obtained with a power
spectrum from a virtual 22 nm aperture (40 room temperature unit cells) indicated by the white circle
in (a). In both (b) and (c), second harmonics with wavevector 2q can be seen. (d) Linescan along the
[100]∗ direction in (c) and four similar traces taken from nearby regions. In each case q/a∗=0.27. The
orientation of q was found to be rotated 1.9 in-plane with respect to [100]∗, so to construct the linescans
q was projected onto [100]∗. The variation in intensity in the peak is due to small changes in tilt and
thickness across the specimen. Power spectra from even smaller regions have broader diffraction peaks
due to the (virtual) aperture, but q remains the same. (e) For comparison, five typical random mixture
model simulation runs for spans of 40 unit cells return a variable value for q. Note that the sparse
sampling is a consequence of Fourier transforming a small data set. Image and diffraction patterns
taken by J.C. Loudon.
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Figure 26: (a) CBED pattern taken from a La0.48Ca0.52MnO3 sample at 90 K. Parent lattice reflections
are indicated by solid lines and the dashed lines and arrows indicate the position that q/a∗ = 0.5
reflections would take. The wavenumber of the modulation is q/a∗ = 0.473±0.005. The FWHM of the
CBED probe (3.6 nm) is less than the expected Mn4+ stacking fault separation (as discussed in the
text). (b) SAD pattern taken from the same grain with an aperture of diameter 500 nm (as measured
in the object plane). The wavenumber of the modulation is q/a∗ = 0.468 ± 0.003. Thus the CBED
value matches the large area value within experimental error. Data taken by J.C. Loudon. Figure
from [82].

x = 0.52 at 90 K. The SAD pattern was taken with an aperture of 500 nm, and for the CBED patterns

the probe had a FWHM of 3.6 nm. At this composition the random mixture model would predict the

proportion of x = 2/3 type ordering to x = 1/2 type ordering to be 1:7.3. Therefore the average spacing

between Mn4+ should be 9.6 nm. With a probe of 3.6 nm, one would expect to observe q = 0.5a∗

if the probe did not overlap any x = 2/3 type cells, and sudden changes in periodicity if the probe

did overlap an x = 2/3 cell. If the sub-units are instead taken to be Mn3+ and Mn4+ planes, one

would expect an Mn4+ stacking fault every 6.8 nm on average. Therefore the CBED probe size is

smaller than the average separation of stacking faults in both these models. Surprisingly, in repeated

samplings within this and other grains, the expected q/a∗=0.5 that would correspond to orbitally

ordered alternating Mn3+ and Mn4+ planes is never observed. Instead, the CBED probe recorded the

value q/a∗=0.473±0.005. The nominal value from the composition is 0.48±0.02. Figure 26b shows a

SAD pattern taken from the same grain which gives a value of q/a∗=0.468±0.003, which is the same

as the value from the CBED pattern to within experimental error. Therefore, within experimental

error, q does not vary when the diameter of the diffraction probe is changed from above to below the

separation of the previously proposed stacking faults. Therefore the periodicity of the modulation in

La0.48Ca0.52MnO3 is uniform down to less than ten unit cells. Consequently, it seems likely that there

are no stacking faults.
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4.9 Correlated simulations

The random mixture model was developed further to investigate whether a model which enforced a

degree of correlation could reproduce the experimental results. Two types of correlated simulations

were performed, first a simulation in which two simple patterns of sub-unit grouping were used (Sec-

tion 4.9.1), and second a simulation in which the degree of randomness of the system could be varied

continuously (Section 4.9.2).

4.9.1 Two simple sub-unit patterns

This simulation created a suitable repeating unit, made up of integer period sub-units, which gave the

correct average composition. The array that the simulation created only contained this repeating unit.

Two different methods were developed for creating a suitable unit cell:

1. Consider compositions for which 1000x = n, n integer. Compute the number of 1/2 and 2/3

sub-units needed to produce this composition. Put that number of 1/2 sub-units followed by the

other number of 2/3 sub-units.

2. Use the same number of sub-units as above, so that the 2/3 sub-units are as evenly spaced as

possible.

Neither of these models produced power spectra which resembled linescans of diffraction patterns

taken from materials of the same composition. When the repeating unit is small, i.e. it consists

of a small number of integer period sub-units, the results match the experimental results from the

diffraction patterns well. However, the larger the repeating unit, the further the results deviate from

the experimental results.

This can be explained in terms of rational and irrational numbers. All numbers which can be

written as fractions (of integers) are rational. However, there are different degrees of rationality. A

number such as 1/2 is more rational than 57/100, which is more rational than 34583/1253789. The

more irrational the composition is, the larger the number of sub-units needed to make a repeating unit

for that composition. The larger the repeating unit, the larger the size of the array which must be used

to obtain the periodicity of the average structure (set by the composition) rather than a periodicity

determined by the local structure (which is determined by the type of correlation). Therefore, at less

rational compositions the results from this correlated simulation deviate from the experimental results.

Thus it is not possible to explain the experimental results using this type of correlated simulation.
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Figure 27: First three branches of the probability tree used to construct arrays with weighted proba-
bilities.

Previous sub-unit Probability of next sub-unit type being 1/2 Probability of next sub-unit type being 2/3
1/2 wp1/2 1-wp1/2
2/3 1-wp2/3 wp2/3

Table 1: Probabilities for different sub-unit types as determined by the previous element in the array.

4.9.2 Controlled degree of correlation

In order to vary the degree of randomness in the system, it was necessary to control the correlation factor

while keeping the composition at the correct value. This meant that the probability of a particular

unit being picked next for the array was determined by the type of the previous unit in the array.

The first three probability branches for getting a 1/2 or a 2/3 sub-unit are shown in Figure 27, and

the probabilities are given in Table 1. p1/2 and p2/3 are the probabilities of the initial sub-unit in the

array being a 1/2 or a 2/3 sub-unit, as determined from the composition. wp1/2 is the probability of

getting a 1/2 sub-unit, given that the previous sub-unit was 1/2, and similarly for wp2/3. The average

length for a run of 1/2 sub-units (N1/2) is given by:

N1/2 = (1− wp1/2)

∞
∑

x=1

wpx−1
1/2 x

=
1

(1− wp1/2)
, (2)

and for 2/3 sub-units is:
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Figure 28: Scheme used to construct arrays with weighted probabilities.

N2/3 = (1− wp2/3)

∞
∑

x=1

wpx−1
2/3 x

= (
1

1− wp2/3)
. (3)

The composition C is given by:

C =
( 1
2N1/2 +

2
3N2/3)

N1/2 +N2/3
. (4)

It is possible to obtain an equation linking wp1/2, wp2/3 and C:

1− wp2/3 =
(4− 6C)(1− wp1/2)

(6C − 3)
. (5)

So if one of the weighted probabilities is fixed then the other weighted probability can be found for

any given composition.

The program was run with one weighted probability fixed and the other one varying. However, this

led to problems close to the end members of the series, where the weighted probability that was not

fixed would become negative, i.e. the probability that was not fixed could not become small enough to

give the composition required. Thus it was only possible to look at a small range of correlation values.

The problem was solved by introducing a new parameter, CORR. For compositions in the range 0.5

to 0.583 (halfway between 1/2 and 2/3) the value of wp2/3 was set at CORR and the value of wp1/2

was set so as to produce the correct average composition, and for compositions in the range 0.583 to

0.667 the value of wp1/2 was set at CORR and the value of wp2/3 was set so as to produce the correct

average composition. This is illustrated in Figure 28.

The results are shown in Figures 29 and 30. When CORR was small, the power spectra looked

fairly similar to the random mixture model (Figure 29a). However, as CORR → 1, the power spectra

split into two peaks, one at 1/3 and one at 1/2. The positions of these peaks did not change with

composition, but their relative heights changed. The variation in the position of the superlattice peaks

with composition for various values of CORR is shown in Figure 30. It can be seen that the results
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Figure 29: Power spectra obtained from simulations with different values of CORR. (a) was obtained
with CORR=0.3 and (b) was obtained with CORR=0.8.
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Figure 30: Positions of superlattice reflections as a function of composition for different values of CORR.
(a) CORR = 0.01, for (b) CORR = 0.3, (c) and (d) CORR = 0.5, (e) CORR = 0.7 and (f) CORR =
0.99. For (d) the simulation was altered to detect peaks of lower heights than in the other simulations.
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never follow the experimental relation q/a∗ ≈ 1− x. The results are closest to q/a∗ ≈ 1− x for CORR

< 0.3, and diverge from the line q/a∗ ≈ 1− x as CORR → 1. It would be difficult to explain the large

scale electron patterns on the basis of a correlated model, though a model with CORR< 0.3 might be

within experimental errors.

Simulations with high correlation values give power spectra with two peaks at wavevectors corre-

sponding to integer period compositions, clearly different to what is observed. Simulations with strong

anticorrelation can give different power spectra, depending on the composition. For compositions close

to integer period compositions (e.g. x = 0.52) each power spectrum shows a broad, low peak. This

is because there are very few of one type of sub-unit compared to the other, so making the sub-units

alternate introduces a high degree of disorder into the system. For compositions far from integer period

compositions, the power spectra shows a sharp peak with satellite peaks. This arises because a compos-

ite repeating unit (e.g. a 1/2 sub-unit followed by a 2/3 sub-unit) is very close to being the repeating

unit. None of the types of pattern found in the correlated simulations are found in experiments.

4.10 Frenkel Kontorova model - background

This discrete version of the sine-Gordon equation was developed in 1938 by Frenkel and Kontorova.

The Frenkel Kontorova model [84] is useful for investigating systems in which different periodicities

compete. Here the periodicity of the parent crystal lattice is in competition with the period of the low

temperature superlattice. It is assumed that the ‘natural’ period of the superlattice would be obtained

by spreading the Mn valence electrons as far apart as possible. The model consists of a collection of

balls connected between nearest neighbours by springs which obey Hooke’s law, as shown in Figure 31.

The balls sit in a one dimensional sinusoidal substrate potential at zero temperature.

The potential energy of the system is given by:

U =
1

2
K

∑

j

(Zj+1 − Zj − a)2 − V
∑

j

cos

[

2π

b
Zj

]

, (6)

where:

Zj is the position of the jth ball

a is the equilibrium length of each spring

b is the period of the substrate potential

K is the spring constant

V is the depth of the substrate wells.

The energy minima of the system can be found by setting dU/dj = 0 or fj = 0 to find the equilibrium

positions of the balls (this identifies the ground state and other energy extrema). The potential energy
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of the system can them be calculated to identify the ground state(s). The force on the j th ball fj , is

fj = K(Zj+1 − 2Zj + Zj−1)−
2π

b
V sin

[

2π

b
Zj

]

. (7)

This equation can be written in a simpler form by rescaling the variables.

Xj =
2π

b
Zj , (8)

V =

[

2π

b

]2
V

K
, and (9)

Xj+1 − 2Xj +Xj−1 − V sinXj = 0. (10)

The equilibrium length of the springs a (corresponding to the superlattice period), enters the poten-

tial energy only as a pressure term, P = −Ka, which couples to the density or average particle spacing

and does not enter the equilibrium conditions. Consider the absolute ground states (those with the

lowest energy per particle) at a given pressure. These states have a definite average relative periodicity

α = lim
j→∞

1

bj
(Zj − Z0)

= lim
j→∞

1

2πj
(Xj −X0), (11)

measured in units of the wavelength b of the potential (corresponding to the lattice period). Aubry [85,

86] has proved that the ground states of the system with average relative periodicity α are in fact

periodic. The position of the jth ball in any ground state is

Xj = 2παj + g(2παj), (12)

where g is periodic with period 2π (corresponding to the period of the lattice).

The value of α determines whether the system is commensurate or incommensurate. If α is rational

the system is commensurate and the problem is relatively simple since there are only a finite number

of non-equivalent balls. If α is irrational the system is incommensurate and the system is more com-

plicated. It can be shown that the absence of a zero frequency phonon mode implies the existence of

a pinned state for a small applied force [87]. For a commensurate system perturbation theory can be

used to show that there is no zero-frequency phonon mode, and thus the ground state will be pinned.

If the system is incommensurate the ground state may be unpinned. Aubry [85, 86] has proved that,
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for those systems to which perturbation theory may be applied, for sufficiently small V the system is

unpinned (a zero-frequency phonon mode exists) but as V increases the zero-frequency phonon mode

disappears and the system becomes pinned.

It is possible to obtain some insight into the behaviour of incommensurate systems by considering

the sine-Gordon equation (the continuum approximation of the Frenkel Kontorova model). This system

exhibits soliton solutions [87] which are unpinned (the system has a zero-frequency phonon mode). In a

weak potential an incommensurate system which is nearly commensurate (i.e. whose relative periodicity

is close to a rational with a small denominator) can be thought of as consisting of almost commensurate

regions (domains) separated by regularly spaced domain walls or discommensurations (solitons in the

continuum limit). In the discrete case, these domain walls are pinned (no zero-frequency phonon mode)

unless there are balls in the ground state which are arbitrarily close to the top of the potential.

By examining the Frenkel-Kontorova model with weak substrate (lattice) potential perturbation

it is possible to show that in the commensurate case there is both a minimum and a saddle point in

energy. The stable (minimum energy) solution does not have a ball sitting at the top of a well, but the

saddle state does [87, 88]. In both solutions all the balls are symmetrically placed about either X=0 or

π [88, 89]. So for all V the stable ground state solution for a commensurate system will never have a

ball at the top of a well and will always have the balls symmetrically placed about X=0 or π. Hence

any commensurate system will have no zero frequency phonon and will be pinned for any value of the

potential.

For incommensurate systems (α irrational), if α is far enough from every rational and V is small

enough then the perturbation theory converges, and it can be shown that the system is unpinned (a

zero frequency phonon mode exists) [85, 86]. However, for a sufficiently large V the ground state is

pinned even in the incommensurate system [85, 86]. Note that in contrast to commensurate states,

which are locked to the substrate, incommensurate states exhibit translational invariance [85, 86].

4.10.1 Dynamical model

The system was described using the damped equations of motion

fj = K(Zj+1 − 2Zj + Zj−1)−
2π

b
V sin

[

2π

b
Zj

]

− g
.

Zj (13)

where fj was taken to be the acceleration, i.e. the mass of the balls was set to one.

The equations were solved using deqsy, a differential equation solver from the ccmath library [90].

The final state the balls settled into was taken to be the ground state. An array was then created by

putting a form factor at the position of each electron. The form factor was a spike of height one, and
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a

b

Figure 31: Illustration of the Frenkel Kontorova model. The springs are shown displaced from the
potential as the springs are only affected by the horizontal separation of the balls. (a) shows the initial
state of the system and (b) shows the ground state of the system. The system is periodic.

the value of the array everywhere away from an electron was zero. A discrete Fourier transform was

used to obtain the power spectra, as described in Section 4.2.

4.11 Frenkel Kontorova model - results

A dark field image was formed using two adjacent superlattice reflections for a sample with nominal

composition x = 0.52. This image showed interference fringes, which arise from the interference of

the two reflections (they do not represent a real space phenomenon) [91]. The magnitude of the

wavevector (wavenumber) was found, using the spacing of the interference fringes, for 80 different areas

of diameter 50 nm in a dark field image of a sample with nominal composition x = 0.52. The mean

(0.45a∗) and standard deviation (0.0035a∗) of the wavenumbers were calculated. The difference between

the wavenumber expected from the nominal composition (q/a∗ = 0.48) and the average wavenumber

suggests that the doping level in the area observed may not have been x=0.48, or that the value of

the wavenumber may have been affected by strain (see Chapter 6). A simulation was then performed

for 3000 arrays of the same size (where the composition was taken to be x=0.55 in order to obtain the

correct average vale of q/a∗), for different values of V /K. The experimental and theoretical results are

shown in Figure 32.

The experimental standard deviation of q/a∗ provided the upper limit for the standard deviation
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of the wavenumber. The experimental variation in the wavenumber could be due to the factors that

the model simulates, or it could be due to faults in the sample. So the standard deviation calculated

from the experiment must be less than the standard deviation calculated from the simulations.

Therefore, as shown in Figure 32, V /K < 0.03. This suggests that the a direction the electron-

lattice coupling is weak compared to the electron-electron coupling. However, since the electron-lattice

coupling is generally considered to be strong in these materials, this result could also be interpreted as

indicating that the electron-lattice coupling is strongly frustrated in along the a direction.

4.12 Summary of results

The results presented in this chapter lead to the conclusion that the low temperature modulation has a

uniform periodicity down to the length scale of a few unit cells. This is suggestive of a smoothly varying

modulation, though not necessarily a sinusoidal one. This rules out the traditional stripe picture, since

it is not possible to construct a model which exhibits uniform periodicity with two Mn charge stripes.

However, a complex three dimensional distribution of Mn3+ and Mn4+ ions cannot be ruled out,

although the fact that no superstructure is observed along the b∗ and c∗ directions [79, 82, 83] implies

that the distribution is disordered along the b and c directions. Such a model, in which the Mn3+:Mn4+

ratio is modulated in successive planes (with the modulation along a), has been suggested [79] and
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could account for the uniform periodicity of the modulation. However, the disorder of cations within

the planes would tend to broaden the diffraction peaks, in disagreement with the sharp reflections

observed, which show no broadening along the b∗ or c∗ directions.

A simpler explanation for the uniform periodicity result is that the electron-lattice coupling is

weaker than expected. The failure of the electron-lattice coupling to lock the superlattice and parent

lattice periodicities suggests that the coupling may be too weak to bring about a strong electronic

charge localisation. This is surprising since the low temperature superstructures in manganites have

hitherto been associated with strong electron-lattice coupling. The high resistivity of the samples at all

temperatures might support this association, since weak electron-lattice coupling could permit metallic

behaviour above the long-range ordering temperature. However, the observation of diffuse superlattice

reflections in manganites at room temperature [80, 82, 92] suggest that short range fluctuations, which

suppress metallic behaviour, are present at temperatures much higher than the long-range ordering

transition. In addition, an optical “pseudogap” has been found to persist above room temperature [93].

Weak electron-lattice coupling would be associated with some degree of electron itineracy, c.f. the

structural modulations of the layered manganites [64, 65, 94–96], which are attributed to enhanced

Fermi surface nesting due to reduced dimensionality.

The findings presented here inspired an investigation of the ground state of La1−xCaxMnO3 by

Brey [97]. By solving a realistic Hamiltonian that correctly reproduced the ferromagnetic phase at

x=0.3 and the CE antiferromagnetic phase at x=0.5, Brey found that at x = 0.5 a weak uniform

modulation of the charge was stable with respect to the traditional charge order model. Brey also

discovered that a modulation would be observed even in the limit of zero electron-lattice coupling, due

to orbital order.

The failure of the low temperature superstructure to lock in to an integer period modulation is

surprising, particularly for x = 0.52, which might be expected to lock in to q/a∗ = 0.5 [98]. Thus

it would seem that there is no significance associated with compositions at which one would expect

integer period modulations, particularly since the values of wavevectors measured at ‘integer period’

and ‘non integer period’ compositions can overlap (this occurs for x=0.5 and x=0.52). In addition, the

mismatch routinely observed between q/a∗ and 1 − x, which is unexpected even in a charge density

wave model, suggests the possibility that the valence electrons may be participating in the formation of

the modulation in a partial manner. The work of Milward et al. [67] suggests that a mismatch between

q/a∗ and 1− x is associated with a ferromagnetic phase. In conclusion, the a simple description of the

low temperature superstructure in La1−xCaxMnO3 consistent with the data presented in this chapter

is a small amplitude [51, 54, 64, 66, 97] charge density wave with finite electron itineracy.
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5 TEM, heat capacity and neutron measurements of La1−xCaxMnO3

and Pr1−xCaxMnO3

The experiments and simulations described in the previous chapter clearly indicated that the periodicity

of the low temperature superstructure in La1−xCaxMnO3 is uniform down to a few unit cells at 90 K.

However, the results gave no indication of which atoms move to produce the modulation, whether the

modulation is sinusoidal, or what happens at the phase transitions.

To extend the results on La1−xCaxMnO3, samples made by A.J. Williams for a range of compo-

sitions with varying cation size were used. The composition x = 0.52 was used so that the failure of

the superstructure to lock in to the parent lattice at the unit cell level could be clearly established.

The two extreme compounds were La0.48Ca0.52MnO3 and Pr0.48Ca0.52MnO3, the first of which was

investigated in the previous chapter, and the second of which would be expected to have much stronger

electron-lattice coupling, since the Pr ion is smaller than the La ion. This can be seen from phase

diagrams of Pr1−xCaxMnO3 and La1−xCaxMnO3 (Figure 33), which show that for Pr1−xCaxMnO3

compositions from x = 0.3− 0.5 are “charge ordered”, whereas for La1−xCaxMnO3 they are ferromag-

netic. Thus it should be more energetically favourable for the superstructure to lock into the lattice in

Pr0.48Ca0.52MnO3 than in La0.48Ca0.52MnO3.

The TEM measurements presented in this chapter were performed to confirm whether manganites in

which stronger electron-lattice coupling is expected would also show uniform periodicity. The neutron

measurements allowed both Rietveld refinement, which gives an average structure, and pair distribution

function refinement, which gives information about the distribution of atom positions locally. The heat

capacity measurements were carried out to obtain information about the phase transitions.

5.1 Sample preparation

All samples were prepared by A.J. Williams by repeated grinding, pressing and sintering of appropriate

oxides and carbonates in stoichiometric proportions as described in Section 4.4.1. The Ca and Sr

carbonates were decarboxylated by heating for 12 hours at 950◦C. Each sample was then reground,

repelleted and heated at 1350◦C for 4 days, then reground, repelleted and reheated at 1350◦C for

another 4 days. X-ray powder diffraction indicated that the samples were single phase. For example,

the fit for the Pr0.48Ca0.52MnO3 data achieved χ2=1.0 (Figure 34), while for La0.5Ca0.5MnO3 χ
2=1.2.

5.2 Introduction to heat capacity measurements

In general, the contribution of vibrational properties dominates the thermal properties of a solid such

as thermal expansion and specific heat, although there can be significant electronic contributions to
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Figure 33: Phase diagrams for bulk polycrystalline Pr1−xCaxMnO3 and La1−xCaxMnO3. From [19,
99, 100].

the specific heat at low temperatures and at phase changes. A phase change is the transformation of

a macroscopic ensemble of objects into another distinct ensemble resulting from an instability of the

system. In order for a phase change to proceed spontaneously at a given temperature and pressure, it

must be associated with a decrease in free energy. The energy change associated with a change from

one phase to another at a given temperature and pressure is given by the Gibbs free energy change

∆G:

∆G = ∆H − T∆S , (14)

where ∆H is the enthalpy change, and ∆S is the entropy change.

The energy change associated with a change from one phase to another at a given temperature and

volume is given by the Helmholtz free energy change ∆F :

∆F = ∆U − T∆S , (15)

where ∆U is the change in internal energy.
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Figure 34: X-ray data and model refinement for Pr0.48Ca0.52MnO3. The red crosses show experimental
data, the green line shows the simulated results from a refined structure, the black markers show
positions of reflections as predicted from the lattice parameters and space group, and the purple line
is the experimental data subtracted from the simulated results. Data taken by A.J. Williams.
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5.2.1 Heat, entropy and heat capacity

The flow of heat Q, into or out of a system causes a change in temperature δT , and the heat capacity

is given by:

C =
δQ

δT
. (16)

For an isochoric (constant volume) process, C = CV =
(

δU
δT

)

V
, and an for isobaric (constant

pressure) process C = CP =
(

δH
δT

)

P
. It is important to note that the specific heat at constant volume

and pressure are not equal. CP is typically measured experimentally, but theories are derived for CV .

However, the two quantities are approximately the same at low temperatures. Thus low temperature

fits of specific heat data provide useful parameters that are directly comparable to theory because in

most cases the ground state is reached. The thermodynamic relationship between entropy and the

specific heat is obtained using
(

δS
δT

)

P
= CP

T . Thus the entropy change for an isobaric temperature

change is:

∆S =

∫ T2

T1

CP
T
dT. (17)

The entropy change for a reversible first order phase change is calculated from

∆Str =
∆Htr

Ttr
, (18)

where ∆Str is the entropy change of the transition, ∆Htr is the enthalpy change associated with

the phase change, and Ttr is the transition temperature. The total entropy change that occurs in a

material when the temperature is changed from T1 to T2 is given by:

∆S =
∑

i

∆Hi

Ttr,i
+

∫ T2

T1

CP (T )

T
dT, (19)

where the sum is over all first-order phase changes transitions that fall in T1 < T < T2.

5.3 Phase changes

The mathematical picture of the behaviour at the transition temperature defines the order of the phase

change. There are two common cases: first order and second order (continuous).

5.3.1 First order phase changes

The behaviour of CP for a first order phase change is shown in Figure 35a. CP tends to infinity at the

transition temperature where the two phases coexist. In first order transitions the first derivatives of the
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Figure 35: (a) First order phase change and (b) continuous phase change.

Gibbs function, such as entropy (−
(

δG
δT

)

p
) and volume (

(

δG
δp

)

T
), are discontinuous at the transition

temperature, and abrupt changes are experimentally measured in such quantities. A phase change

which is consistent with these criteria is termed first order.

5.3.2 Second order phase changes

Second order transitions are so called because the second derivatives of the Gibbs function exhibit

discontinuities, and are characterised by power law singularities given by some empirically determined

exponential, e.g. C ∝ |T − Tc|−β . However, since the volume, entropy and Gibbs function remain

invariant at the transition temperature, these are also termed continuous transitions. A graphical

example of this type of phase change in CP is shown in Figure 35b.

5.4 Experimental setup for specific heat measurements

The heat capacity and magnetic susceptibility measurements were carried out in collaboration with

J.C. Lashley at the Los Alamos National Laboratory.

The heat capacity of the samples was measured using a Quantum Design Physical Properties Mea-

surement System (PPMS), which employs a thermal-relaxation calorimeter that operates in the tem-

perature range 1.8-395K. The accuracy of the PPMS specific heat data has been determined by Lashley

et al. to be 1% between 100 and 300 K, with the accuracy decreasing at low temperatures to ±3%
below 4 K [101]. The system was found to measure CP(T ) accurately near a second order transition,

but the specific heat near a first-order transition must be determined from the PPMS-measured decay

curves. Thus if the order of a transition is not known, it is necessary to check that the correct value of

CP(T ) is being calculated near the transition.
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In experiments, a control run was first performed with a synthetic sapphire sample to check that

the system was correctly calibrated. Samples were cut, cleaned with acetone and weighed carefully. For

heat capacity measurements, the samples had masses between 30 and 40 mg. Magnetic susceptibility

measurements were performed using a Quantum Design Magnetic Properties Measurement System,

with samples of masses between 35 and 45 mg.

5.5 Previous heat capacity studies of La1−xCa1−xMnO3 and Pr1−xCa1−xMnO3

Heat capacity measurements can provide valuable insight into the type of transition which is occurring

when the low temperature superstructure forms. Most studies of the specific heat of manganites

have focused on the FM-insulator transition, and in particular whether it is first or second order

e.g. [102, 103]. However, specific heat measurements were made across almost the entire La1−xCaxMnO3

phase diagram (0.1 ≤ x ≤ 0.9) by Ramirez et al. [104, 105]. Two transitions were observed as peaks in

specific heat data for samples with x ≥ 0.5. The peak at higher temperature is attributed to critical

fluctuations of the order-disorder type associated with “charge ordering”. The lower temperature peak

is attributed to the transition from a paramagnetic state to an AFM state. These peaks were also

observed by Fernandez-Diaz et al. [106] and Lees et al. [107], although Ghivelder et al. have examined

La0.38Ca0.62MnO3 and observed only the higher temperature transition, leading them to suggest that

the onset of the AFM state is established together with the “charge ordering”, and that the AFM order is

continuously developed below TN, eventually leading to a fully ordered state at low temperatures [108].

At x = 0.5 the upper transition is attributed to FM. Measurements of the sound velocity v show a large

change over this transition, which is interpreted as a large lattice hardening to large electron-lattice

coupling via the Jahn-Teller effect. The lower transition, which exhibits clear hysteresis, is attributed

to AFM-“charge order”.

Smolyaninova et al. [109, 110] examined La0.5Ca0.5MnO3 and Pr1−xCaxMnO3 and found an anoma-

lous low temperature specific heat C ′ in the “charge ordered” materials as compared to ferromagnetic

samples. However, it should be noted that their fitting does not use the T 2 term introduced by Wood-

field et al. [111] and used by Ghivelder et al. and Lees et al.. This excess specific heat was observed

in Pr0.48Ca0.52MnO3 (x = 0.3, 0.35, 0.45, 0.5) and La0.5Ca0.5MnO3. It is suggested that the excess

specific heat is either due to low energy optical excitations (proportional to T 3/2) or orbital excitations

arising from the orbital ordering (for example, intersite bipolarons). It was demonstrated that C ′ was

associated with “charge order” by doping Pr0.5Ca0.5MnO3 with Cr, which destroys the “charge order”.

Additionally C ′ does not disappear even in an 8.5 T field, indicating that it is present in the FM state

and is therefore not of AFM origin.
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Lees et al. [107] examined the heat capacity of Pr0.6Ca0.4MnO3 and found that entropy associated

with the higher temperature transition is nearly 2 J mol−1K−1, whereas the entropy developed at the

lower transition is only 0.6 J mol−1K−1. The fact that more entropy is associated with the “charge

ordering” transition is explained by the fact that the structural phase transition is accompanied by

rapid changes in the lattice parameters and bond lengths. The entropy of the lower transition is small

compared to the value of 1.2 J mol−1K−1 found for the same transition in La0.35Ca0.65MnO3 [104]. This

is taken to suggest that either a sizable fraction of the spin entropy is given up at lower temperatures,

as the system evolves from a canted structure to a PM state, or that short-range magnetic correlations

persist to temperatures well above TN.

5.6 Analysis

At high temperatures (50 K - 300 K) specific heat data probes the nature of the magnetic, structural

and electronic phase transitions, and the quality and purity of the sample. Low temperature data

(particularly T < 10 K) probes the low temperature charge, spin and lattice excitations. To observe

the transitions clearly, it is necessary to model the background of the heat capacity results and remove

them.

The methods used to fit the models to the data are described in Appendix 8.

5.6.1 Modelling low temperature data (0.6-10 K)

The low temperature heat capacity data can be fitted to an equation of the form:

Ctotal = Clattice + Celec + Chyp + Cmag , (20)

Clat = β3T
3 + β5T

5 , (21)

Celec = γT , (22)

Chyp =
α

T 2
, (23)

Cmag = δTn , (24)

where β3 = Nk 12π4

5
1
θ3

D

, θD is the Debye temperature, β5, α and δ are constants, γ is proportional to

the electronic density of states at the Fermi surface, and the value of n depends on the type of spin

wave present in the material.

By fitting the low temperature specific heat it is possible to calculate parameters such as the Debye

temperature θD. As has been noted by Woodfield et al. [111] and Lees et al. [107], reasonable fits to

the data can only be obtained by including a hyperfine term (1/T 2).
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For compounds which are insulators at low temperatures, it is difficult to justify the inclusion of

a linear term in the expression used to fit the data, so the γT term is generally dropped [107, 108].

However, fits made to “charge ordered” Pr1−xCaxMnO3 have given values of γ that are larger than

those found in metallic manganites [110]. It is suggested that this term may arise from spin glass

behaviour or charge disorder, since in a field the γ term decreases to the value for metallic manganites.

It is possible that the T 3 term includes an additional antiferromagnetic spin wave contribution,

which would cause the calculated value of θD to be incorrect. The dispersion relation for AFM spin

waves in a material with standard Neel AFM order is E = (∆2 + A2q2)1/2 where A is proportional to

the exchange energy, and ∆ is the anisotropy gap. If ∆ >> kBT then CAFM is exponentially small. If

∆ << kBT , then

CAFM = CakB(
kBT

A
)3 =

8π2R

15
(
T

θc
)3 , (25)

where Ca is a constant whose value depends on the lattice type, R is the ideal gas constant and

θc is close to TN [112, 113]. Smolyaninova et al. found CAFM to be around 10% of the lattice

contributions [109].

For long wavelength spin excitations in an A-type antiferromagnet one can write [111]:

CAFM = δ2T
2 . (26)

The samples studied here are similar in composition to samples which have been found to be phase

separated at low temperatures. Roy et al. [114] has found non-equilibrium effects in phase separated

samples in which small clusters of FM coexist with a primarily AFM regime. Thus there may be some

ferromagnetic phase present at low temperatures, which would give rise to FM spin waves, giving a

term

CFM = δT 3/2 , (27)

in the specific heat. However, this term can be hard to observe, even in samples which are FM at

low temperatures [108, 110].

5.6.2 Modelling high temperature data

Dulong and Petit’s law gives the limiting value of CP at high temperature (∼300 K). For a system

containing r atoms per molecule (or here, r atoms per unit cell) CP ∼ 3rR J mol−1K−1, where R is

the molar gas constant [115]. Here r=5, giving an expected CP of 124.7 J mol−1K−1. If this is close

to the value observed, it indicates that the sample is of good quality.
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The high temperature data contains a smooth background which must be subtracted by modelling

the specific heat in temperature ranges away from the transitions. Since the temperature range of the

data (usually taken to be 50 − 300 K) is of the same order as the Debye temperature (θD ∼ 500 K)

the lattice part dominates. The lattice part of the background can be modelled by a number of optical

modes [104, 108], in the case of La1−xCaxMnO3. However, Lees et al. found that for Pr0.6Ca0.4MnO3

the data cannot be fitted over the whole temperature range using a Debye function, as θD can be weakly

temperature dependent. Instead they fitted the background with a polynomial [107].

Here the data is modelled the data with a Debye model and an Einstein mode:

C = 3R

[

mD

[

θN
T

]

+ nE

[

θE
T

]]

, (28)

where

D

[

θD
T

]

=
3

x3
0

x0
∫

0

x4exdx

(ex − 1)2
, x0 =

θD
T

(29)

and

E

[

θE
T

]

=
x2ex

(ex − 1)2
, x =

θE
T

(30)

where θD has been determined from the low temperature data.

The transitions can be examined to determine if they are first order or continuous. For a continuous

transition there should be no discontinuity between C above and below Tc, and no hysteresis observed

in properties such as the magnetisation.

5.7 Results of heat capacity measurements

The heat capacity measurements were taken with very dense data points (between 140 and 600 mea-

surements made between 1.8 K and 300 K), and the system was allowed around twenty minutes to

reach equilibrium at each temperature. The importance of this approach is indicated by the exception,

the warming data for La0.5Ca0.5MnO3. The more widely spaced points and quicker data collection (the

system was allowed around three minutes to reach equilibrium at each temperature) did not just mean

that information was more sparse; the data was qualitatively different.

Heat capacity data was taken for La0.5Ca0.5MnO3, La0.48Ca0.52MnO3 and Pr0.48Ca0.52MnO3, and

magnetisation data for La0.5Ca0.5MnO3 and La0.48Ca0.52MnO3. The PPMS decay curves were exam-

ined in the regions of the transitions, but the values derived manually were the same as the values which

had been determined automatically, within experimental error. The data for all three compounds shows
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Figure 36: Heat capacity of La0.5Ca0.5MnO3 showing a difference between results with dense data
points and widely spaced data points, assuming that warming and cooling data are equivalent.
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Figure 37: Heat capacity, and magnetisation in 100 Oe, of La0.5Ca0.5MnO3 with warming data shown
in red and cooling data shown in blue. M-H loops taken at 205 K and 150 K on cooling.

67



two transitions, as does the magnetisation, which shows a transition of some proportion of the sample

to FM, and then to AFM (see Figures 37, 38, 39). The maximum magnetisation is around ten times

smaller for the La0.48Ca0.52MnO3 sample than for the La0.5Ca0.5MnO3 sample. The magnetisation-

field loops taken in the temperature range in which some proportion of the sample is ferromagnetic

show hysteresis; the loops taken outside this region do not. The fact that both La0.5Ca0.5MnO3 and

La0.48Ca0.52MnO3 show a FM-AFM transition lends support to the suggestion of Milward [67] that

charge order which has not locked into its low temperature value will be associated with ferromagnetism.

The upper transition is much clearer in Pr0.48Ca0.52MnO3 than in the other compounds. This could

be due to electron-lattice coupling being stronger in Pr0.48Ca0.52MnO3 than in La0.48Ca0.52MnO3.

The backgrounds of the data were modelled and removed as described in the previous section, so that

the transitions could be observed more clearly. The temperatures of the transitions were calculated

and are shown in Table 2. The transitions for both La0.48Ca0.52MnO3 and Pr0.48Ca0.52MnO3 show

hysteresis, with the temperature hysteresis of the lower transition (12 K for La0.48Ca0.52MnO3 and

7 K for Pr0.48Ca0.52MnO3) being greater than the temperature of the upper transition (5 K for both

La0.48Ca0.52MnO3 and Pr0.48Ca0.52MnO3). However, temperature hysteresis of the magnetisation is

much larger than the heat capacity hysteresis ('70 K, in La0.48Ca0.52MnO3, Pr0.48Ca0.52MnO3 data not

yet available). For La0.48Ca0.52MnO3 and Pr0.48Ca0.52MnO3, the warming data was used to calculate

the entropy of transition, since a better fit to the background was obtained. For La0.5Ca0.5MnO3

the warming data showed undesirable effects (discussed in the first paragraph of this section), and

so the cooling data was used. The La0.5Ca0.5MnO3 heat capacity with the background removed (see

Figure 40) shows two peaks, but they are not distinct. In order to separate the contributions of the

upper and lower transitions the positions of the two peaks were identified and the shape of the higher

temperature transition was recorded from the peak position (223 K) to 260 K, at which point the heat

capacity had fallen to the level of the fitted background. The higher temperature transition peaks

for La0.48Ca0.52MnO3 were then examined to determine the asymmetry of the upper peak and higher

temperature peak for La0.5Ca0.5MnO3 was then reconstructed from the right-hand half of the peak

with this asymmetry. The contribution of the higher temperature peak was subtracted from the heat

capacity above background to find the contribution of the lower temperature transition.

Since in this case the two peaks were not distinct the two transitions were separated by taking the

right hand half of the larger peak and creating the left hand half assuming the same asymmetry as for

La0.48Ca0.52MnO3.

The ratio of the entropy associated with the high temperature transition and the entropy associated

with the low temperature transition falls in the range 6.4–3.2 for the three compounds studied. As can
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Figure 38: Heat capacity, and magnetisation in 100 Oe, of La0.48Ca0.52MnO3 with warming data
shown in red and cooling data shown in blue. M-H loops taken at various temperatures on warming
and cooling.

Lower transition (K) Upper transition (K)
cooling warming cooling warming

La0.5Ca0.5MnO3 150 - 223 -
La0.48Ca0.52MnO3 146 158 218 223
Pr0.48Ca0.52MnO3 131 138 229 234

Table 2: Transition temperatures for La0.5Ca0.5MnO3, La0.48Ca0.52MnO3 and Pr0.48Ca0.52MnO3.
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Figure 39: Heat capacity of Pr0.48Ca0.52MnO3 with warming data shown in red and cooling data shown
in blue.

Entropy of low temperature Entropy of high temperature
transition (J mol−1 K−1) transition (J mol−1 K−1)

La0.5Ca0.5MnO3 0.41 1.33
La0.48Ca0.52MnO3 0.25 0.95
Pr0.48Ca0.52MnO3 0.21 1.36
Pr0.6Ca0.4MnO3 0.6 2.0
La0.25Ca0.75MnO3 0.67 2.3

Table 3: Entropy values for the transitions in La0.5Ca0.5MnO3, La0.48Ca0.52MnO3, Pr0.48Ca0.52MnO3,
Pr0.6Ca0.4MnO3 and La0.25Ca0.75MnO3. Data for Pr0.6Ca0.4MnO3 taken from [107], data for
La0.25Ca0.75MnO3 taken from [116].
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Figure 40: Heat capacity of (a) La0.5Ca0.5MnO3, (b) La0.48Ca0.52MnO3 and (c) Pr0.48Ca0.52MnO3 with
background removed. (a) The blue line is total heat capacity above background. The red line shows
contribution of upper transition, obtained by taking the right hand side of the upper peak and creating
a left hand side such that the asymmetry of the peak was the same as that for La0.48Ca0.52MnO3.
The green line is the heat capacity above background with the contribution of the upper transition
subtracted from it, and is taken to be the contribution of the lower transition. In (b) and (c) the red
crosses signify the limits used for the calculation of the entropy.
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be seen from Table 3, the value of the ratio for similar compounds is towards the low end of that range

(∼ 3.4). However, although the ratios are similar, the values of the entropies calculated here are lower

by a factor of around two than those found in similar compounds (see Table 3). One possible reason

for this is differences in the method of subtracting the background. However, it should be noted that

the variation in the entropy measured for a transition can vary by almost a factor of two depending on

the type of sample and the type of measurement [117].

The La0.48Ca0.52MnO3 heat capacity was subtracted from the Pr0.48Ca0.52MnO3 heat capacity.

Since the masses of Pr and La differ by only 1.4%, the change in the phonon contribution to the

specific heat would be expected to be at this level [118]. As can be seen from Figure 41, there is a

substantial excess heat capacity for Pr0.48Ca0.52MnO3 in the range 1.8-150 K, which increases rapidly

above 2 K and decreases rapidly above 140 K but remains essentially constant in between (an average

difference of 8%). Thus an extra entropy of 5.1 J mol−1 K−1, of electronic or magnetic origin, arises

in Pr0.48Ca0.52MnO3 relative to La0.48Ca0.52MnO3 in this temperature range.

The result that there is an extra component, possibly electronic, to the heat capacity of Pr0.48Ca0.52MnO3

relative to La0.48Ca0.52MnO3 suggests that the electron-lattice coupling in Pr0.48Ca0.52MnO3 is stronger

than in La0.48Ca0.52MnO3. The lack of latent heat at the transitions (from the PPMS decay curves)

suggests that even the transitions are continuous rather than first order.

5.8 Introduction to neutron scattering

The information obtained in a neutron scattering experiment is based upon the number of particles

collected in a particular scattering geometry and in certain cases the energy of the scattered beam. It

is generally assumed that each scattered neutron has undergone a single scattering event, which is a

reasonable approximation since neutrons only interact weakly with matter. In this case experimental

quantities are proportional to the double differential scattering cross section, which can be evaluated

theoretically, allowing the experiment to be analysed quantitatively. Nuclear scattering events are

described by a Fermi pseudo-potential within the first Born approximation and magnetic scattering

events are considered to be due to the coupling between the neutron magnetic moment and any magnetic

moment distributed in the sample. Note that for nuclear neutron scattering the degree of coherence

of the scattered neutron wave relative to the incident wave depends on the type of nuclei present in

the sample. In the work presented here polycrystalline manganites are used away from their melting

points and any other phase transitions, so the ions and spins in the structure maintain long-term

static correlations that are only disturbed by the thermal movements induced by lattice vibrations and

aperiodic structural defects. Thus a very substantial contribution from periodic features is expected in
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Figure 41: (a) La0.48Ca0.52MnO3 heat capacity and Pr0.48Ca0.52MnO3 heat capacity displayed together.
(b) La0.48Ca0.52MnO3 heat capacity subtracted from Pr0.48Ca0.52MnO3 heat capacity.

the form of nuclear and magnetic Bragg peaks, supplemented by a less intense nuclear and magnetic

scattering contribution arising from thermal perturbations. Since a reconstruction of the space-time

correlation function requires a knowledge of the dynamic structure over a broad range of momentum

and energy transfers, computer software tools used to extract a large amount of information using

reasonable approximations.

In a diffraction experiment, the measured quantity over a given time is the integral over all energy

transfers as a function of scattering angle of the double differential scattering cross section. This

reduces the experimental collection time to limits that are reasonable. In the experiments presented

in this chapter the energy transfer is not resolved, which is equivalent to integrating S(Q, ω) over the

kinematically accessible values of ω for a given Q. Any dynamical or structural disorder (ω=0) feature

that falls in that integration region will contribute to the observed (single) differential scattering cross

section, and thus to S(Q).

Random local distortions constitute an aperiodic contribution to the atomic and spin density func-

tions, creating a diffuse background in the entire reciprocal space. Diffuse scattering is weak in com-

parison to Bragg scattering. In the conventional interpretation it is usually ignored and the analysis

of the diffractograms is based only on periodic arrangements in the lattice. In order to measure the
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weak diffuse scattering, a special experimental setup is required. Diffuse scattering features should

only be attributed to long-lasting perturbations to the ideal periodic features of the crystal when the

experimental temperature and the incident neutron energy are sufficiently low not to excite nuclear or

magnetic lattice dynamic features. In the neutron analysis presented here, the approximation that the

observed diffraction features arise from correlations that appear to be of static origin is made.

5.9 Previous neutron diffraction studies of La1−xCaxMnO3 and Pr1−xCaxMnO3

The neutron diffraction measurements by Wollan and Koehler [14] studied the effects of electronic

doping on the magnetic and structural properties of La1−xCaxMnO3. The model which they fitted

to their data had localised Mn3+ and Mn4+ ordered in alternate planes, termed ‘stripes’. This model

arose from the theoretical work of Goodenough and Kanamori (see references in [12]). In this model,

orbital ordering results from the Jahn-Teller distortion of the high spin 3d4 Mn3+ configuration, and

the resulting superexchange interactions are consistent with the observed spin structure.

Powder X-ray and neutron diffraction studies of La1−xCaxMnO3 have found, via Rietveld refine-

ment, that there is a modulation along the a∗ axis below TCO with a wavevector q = (1 − x − ε)a∗,

where ε tends to zero at low temperatures [52, 119]. The work of Radaelli et al. with La1−xCaxMnO3

at x = 2/3 refined the low temperature structure, and compared how well the bi-striped and Wigner

crystal pictures [23] fitted the neutron data in a Rietveld refinement. The the low temperature crystal

structure of La0.5Ca0.5MnO3 was refined in a monoclinic P21/m symmetry with two displacement co-

ordinates to describe the charge and orbital ordering of the Pnma structure. These results supported

the striped CO model, and the work at x = 2/3 supported the Wigner crystal model.

The alternative Zener polaron model of charge order was developed by Daoud-Aladine et al. on the

basis of a neutron diffraction study of a single crystal of Pr0.6Ca0.4MnO3, which showed a q = 0.5a∗

superstructure [30, 45, 47]. This study found the supercell to have Pm monoclinic symmetry so the

four Mn sites with similar b axis position values are symmetrically independent. (The b axis is that

along which the pseudocubic unit cell is doubled.) Orthorhombic Pnm21 symmetry constraints were

applied. In the Zener polaron model, a valence electron is localised in Mn-O-Mn bridges by double

exchange when the Mn spins are parallel, so the Mn sites each have an average valence of 3.5+.

Goff and Attfield studied Pr0.5Ca0.5MnO3 powder and their Rietveld refinement supported a striped

CO picture rather than a bi-stripe or Zener polaron picture [54]. Kajimoto et al. have examined the

position of a superstructure reflection at different temperatures and found q/a∗ = 0.5 below 215 K,

decreasing to 0.3 above this temperature [120].

Pair distribution function (PDF) studies in the manganites have hitherto mainly focused on short
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range order in La0.5Ca0.5MnO3 [121], or on disorder, for example [122]. The exception the detailed

study by Rodriguez et al. of La0.5Ca0.5MnO3 [51], which demonstrated that both the ZPO and striped

CO picture fit a Rietveld refinement of the data equally well, and only a PDF refinement over the range

1.7−15 Å can distinguish the two models. This analysis also supported a stripe charge ordered picture

over ZPO.

The one study which looked at a composition at which a superstructure which is a non-integer

number of unit cells is expected was performed by Huang et al. on La1−xCaxMnO3 x = 0.53 [123].

However, their analysis assumed that q = 0.5a∗, and the mismatch between the data and the model was

assumed to be due to phase separation, since the fit was improved when a second phase was introduced.

However, it is known from TEM measurements that 0.43a∗ ≤ q ≤ 0.48a∗ at this composition [41, 80, 81]

(also discussed in Section 4.5), so I would suggest that the fit should have in fact been made with a

superstructure of this periodicity, and that their improved fit to the data in the phase separated case is

due to the fact that it brings the average superstructure closer to q = 0.48a∗, since a Rietveld refinement

is only sensitive to the average structure.

5.10 Can different superstructure models be distinguished using PDFs?

In order to assess the ability of PDF experiments to distinguish between different models of charge

order, PDFs were calculated for manganite systems with a charge density wave model and the random

mixture strong binding model [41] with x=0.52. The simulation used a structure generating program to

create the initial positions of the atoms as a number of pseudocubic cells. This structure was then fed

into a Monte Carlo simulation, which generated new structures and accepted them with a probability

based on the calculated potential energy. The Monte Carlo simulation used a Gaussian random number

distribution to make the random changes in position of the O ions and thus create new structures. The

standard deviation of the Gaussian δm was calculated using 1
2kδ

2
m ≈ 2kBT , where k is the strength

of the Mn-O harmonic interaction (discussed in the next paragraph), giving a value of 9x10−12 m at

300 K. The Monte Carlo simulation allowed O ions to move in only one dimension (models which

allowed the O ions to move in more than one dimension were difficult to constrain appropriately).

The model used for interactions between the atoms assumed that the Mn-O interactions and O-O

interactions would both produce a harmonic potential. The equilibrium distance between the Mn and

O atoms in the ac plane was taken to be a/2 where a is the size of the pseudocubic unit cell. Only the

oxygen atoms were allowed to move, and movement was only permitted along one axis. For the two

oxygen atoms which lay on the axis along which movement was permitted, the equilibrium distance

was set at a/2 if the Mn ion was Mn4+, and at (a+ 0.12)/2 for Mn3+. This value was calculated from

75



0

100

200

300

400

500

600

2 3 4 5 6 7 8

P
D

F
 in

te
ns

ity
 (

ar
bi

tr
ar

y 
un

its
)

Distance between atoms in pair (A)

Random mixture model

0

100

200

300

400

500

600

2 3 4 5 6 7 8

P
D

F
 in

te
ns

ity
 (

ar
bi

tr
ar

y 
un

its
)

Distance between atoms in pair (A)

Charge density wave model

Figure 42: Oxygen partial PDFs for the random mixture strong binding model and the charge density
wave model of the low temperature superstructure in La0.48Ca0.52MnO3.

the bond lengths in [124]. For the charge density wave model, the equilibrium distance was directly

proportional to the charge, with the maximum and minimum values being the same as in the random

mixture strong binding model. The equilibrium separation for oxygen atoms was taken to be their

separation in the initial undistorted cubic model. The strength of the harmonic interaction V between

Mn and O was set at 12 eV/Å2, from Tyer et al. [125]. The O-O interaction was set at half this value,

in order that Mn-O interactions should be dominant.

The final positions of the atoms were used to calculate the PDF. The positions of the atoms could

also be plotted layer by layer, which allowed one to check that no physically implausible movements

had occurred. The PDF of a given structure was calculated using the relation:

Gc(r) =
1

r

∑

i

∑

j

[
bibj
<b>2

δ(r − rij)]− 4πrρ0 , (31)

where the sum runs over all pairs of atoms i and j in the model crystal separated by rij . The

scattering length of atom i is bi and <b> is the average scattering length of the sample.

In order to clearly observe the difference between the PDFs for different models only the oxygen

atoms were included in the calculation, since this model assumed that only the oxygen atoms moved.

The results of the simulations, shown in Figure 42, indicate that there should be a clear difference

between the PDF produced by a charge density wave picture and that produced by the random mixture

strong binding model.
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5.11 Experimental setup for neutron measurements

The neutron PDF experiments were carried out at the Los Alamos Neutron Scattering Science Center

(LANSCE) in collaboration with Th. Proffen and A. Llobet. The experiment used the Neutron Powder

Diffractometer (NPDF), a high resolution total scattering diffractometer designed for PDF studies. It

has a resolution of ∆d/d ∼ 0.15− 0.31% and a Q range of 1.5 - 51.1 Å. The mass of the polycrystalline

powder samples was around 10 g for Pr0.48Ca0.52MnO3 and about 6 g for La0.48Ca0.52MnO3. These

samples were sealed in a cylindrical vanadium tube with helium exchange gas. The samples were cooled

in a closed cycle helium refrigerator. Data was obtained for La0.48Ca0.52MnO3 at 300 K, 100 K and

10 K and for Pr0.48Ca0.52MnO3 at 300 K, 180 K, 100 K and 10 K.

5.12 Rietveld refinement of La0.48Ca0.52MnO3 and Pr0.48Ca0.52MnO3 data

Figure 43 shows 300 K and 10 K data and refinements for La0.48Ca0.52MnO3. The splitting of the peaks

in the low temperature data can be clearly observed. Rietveld refinements of the data were carried out

using the General Structure Analysis System (GSAS) Rietveld code [126]. The Rwp factor is:

Rwp =

∑

i wi|yobs
i − ycalc

i |2
∑

wi|yobs
i |2 × 100% , (32)

where yobs
i is the observed intensity at the ith point in the scan, ycalc

i is that calculated and wi is the

weight given to each point in the scan [127, 128]. The room temperature data was modelled with a

Pbnm unit cell (in the Pbnm symmetry c ≈2ac, where ac is the size of the pseudocubic unit cell, whereas

in the Pnma symmetry b ≈2ac). Pbnm was used for consistency with other neutron analysis of similar

compounds. The refined positions of the atoms are given in Tables 4 - 7. The samples were found to be

single phase (χ2 < 10 could be obtained with only one phase). The room temperature refinement for

La0.48Ca0.52MnO3 gave χ2=7.3 and Rwp=5.4%, which compares favourably with the values of χ2=6.2

and Rwp=4.4% found by Rodriguez et al. [51] for La0.5Ca0.5MnO3. For Pr0.48Ca0.52MnO3 the values

were χ2=8.1 and Rwp=4.3%.

The low temperature data presented a problem, since using a superstructure of the correct period-

icity (as found from TEM) would mean that a very large number of room temperature cells would need

to be repeated before the superstructure came back into phase with the room temperature cells (the

periodicity of the room temperature plus superstructure for q/a∗=0.48 is 25 room temperature cells).

Therefore in order to obtain the correct type and size of displacements, the 10 K data was refined

with q/a∗=0.5. The starting structures were taken from previous refinements of x=0.5 compounds,

for La0.5Ca0.5MnO3 from Rodriguez et al. [51] and for Pr0.5Ca0.5MnO3 from Goff and Attfield [54].

For La0.48Ca0.52MnO3 this gave χ2=8.3 and Rwp=6.3% (compared to χ2=6.5 and Rwp=4.5% in [51]),
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Figure 43: Rietveld refinements at (a) 10 K an (b) 300 K for La0.48Ca0.52MnO3. Two examples of
single peaks in the 300 K data which appear as split peaks in the 10 K data are indicated by arrows.

Wyck. pos. x y z
Mn 4b 0.5 0.0 0.0
La/Ca 4c -0.0033(4) 0.0194(24) 0.25
O 4c 0.0596(6) 0.4919(54) 0.25
O 8d 0.7232(81) 0.2771(31) 0.0311(3)

Table 4: Results of Rietveld refinement of positions of atoms for La0.48Ca0.52MnO3 at 300 K. Symmetry
is Pbnm, unit cell dimensions are a=5.4188(5) Å, b=5.4097(5) Å, c=7.6211(8) Å.

while for Pr0.48Ca0.52MnO3 χ
2=15.1 and Rwp=7.1% (compared to χ2=7.56 and Rwp=4.95% in [54]).

Thus the low temperature refinements using a q/a∗=0.5 superstructure show a surprisingly good fit,

particularly for La0.48Ca0.52MnO3. The higher value of χ2 for Pr0.48Ca0.52MnO3 may occur because

of the bimodal distribution of wavenumbers in the sample.

5.13 PDF analysis

5.13.1 Generating PDFs

The program PDFgetN [129] was used to generate the PDFs from the time-of-flight data for La0.48Ca0.52MnO3

and Pr0.48Ca0.52MnO3 at 300 K and 10 K. These PDFs include information from all atoms types in

the crystal (not just oxygen, as in the simulation). This allows the data to be corrected for detector

deadtime and efficiency, background, absorption, multiple scattering and inelasticity effects. It is also

normalised by the incident flux and total scattering cross-section to give the total scattering structure

function S(Q). This is then Fourier transformed:

G(r) =
2

π

∫ ∞

0

Q[S(Q)− 1]sin(Qr)dQ (33)
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Wyck. pos. x y z
Mn 2a 0.0 0.0 0.0
Mn 2b 0.5 0.0 0.0
Mn 4f 0.2498(5) -0.0032(1) 0.4863(11)
La/Ca 2e 0.0150(1) 0.25 0.5023(22)
La/Ca 2e 0.5068(22) 0.25 0.4952(21)
La/Ca 2e 0.2612(11) 0.25 -0.0035(1)
La/Ca 2e 0.7569(33) 0.25 0.0160(1)
O 2e -0.0041(1) 0.25 -0.0661(3)
O 2e 0.4986(28) 0.25 -0.0645(3)
O 2e 0.2493(14) 0.25 0.5416(31)
O 2e 0.7401(42) 0.25 0.5817(33)
O 4f 0.1374(7) 0.0318(1) 0.2144(12)
O 4f 0.1149(6) -0.0365(2) 0.6990(39)
O 4f 0.6393(36) 0.0321(1) 0.2429(13)
O 4f 0.6141(34) -0.0348(1) 0.7440(42)

Table 5: Results of Rietveld refinement of positions of atoms for La0.48Ca0.52MnO3 at 10 K. Symmetry
is P21/m, unit cell dimensions are a=10.8646(2) Å, b=7.5146(1) Å, c=5.4586(5) Å, with α = 90◦,
β = 90.1037◦, γ = 90◦.

Wyck. pos. x y z
Mn 4b 0.5 0.0 0.0
Pr/Ca 4c 0.0044(1) 0.0275(2) 0.25
O 4c 0.0670(6) 0.4871(47) 0.25
O 8d 0.7171(65) 0.2842(25) 0.0347(3)

Table 6: Results of Rietveld refinement of positions of atoms for Pr0.48Ca0.52MnO3 at 300 K. Symmetry
is Pbnm, unit cell dimensions are a=5.3856(4) Å, b= 5.3945(4)Å, c=7.5923(8) Å.

Wyck. pos. x y z
Mn 2b 0.0 0.0 0.5
Mn 2b 0.5 0.0 0.5
Mn 4f 0.2464(5) 0.0077(1) 0.0084(1)
Pr/Ca 2e 0.0144(1) 0.25 -0.0081(1)
Pr/Ca 2e 0.2662(16) 0.25 0.5105(32)
Pr/Ca 2e 0.5155(32) 0.25 -0.0088(1)
Pr/Ca 2e 0.7616(48) 0.25 0.4911(3)
O 2e -0.0029(1) 0.25 0.4379(26)
O 2e 0.2398(14) 0.25 0.0924(5)
O 2e 0.4931(29) 0.25 0.4329(26)
O 2e 0.7455(45) 0.25 0.0590(3)
O 4f 0.3587(21) -0.0377(2) 0.2964(17)
O 4f -0.1086(6) 0.0391(2) 0.7619(46)
O 4f 0.8568(51) -0.0306(1) 0.2696(16)
O 4f 0.3875(23) 0.0407(2) 0.8044(48)

Table 7: Results of Rietveld refinement of positions of atoms for Pr0.48Ca0.52MnO3 at 10 K. Symmetry
is P21/m, unit cell dimensions are a=10.8385(1) Å, b=7.4752(11) Å, c= 5.4164(9)Å, with α = 90◦,
β = 90.1491◦, γ = 90◦.
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Figure 44: PDFs at 300 K and 10 K for La0.48Ca0.52MnO3.

The data was terminated at a value of Qmax = 40 Å, the data from all four banks of detectors (at

different angles) were combined and the PDF was optimised.

Figure 44 shows PDFs for La0.48Ca0.52MnO3 at 300 K and 10 K, demonstrating that there is a

clear difference between the high temperature and low temperature data.

5.13.2 Which analysis program?

PDFFIT [130] was chosen for the analysis because, although it is designed to analyse small ordered

structures, by recompiling it can be forced to accept large structures. In addition, it was found that

little error was introduced by terminating the supercell after five unit cells, allowing a large amount of

phase space to be searched with a truncated structure, and the values obtained from that search to be

refined with the full superstructure.

Since PDFFIT cannot calculate symmetrically equivalent positions, the structures obtained via

Rietveld refinement were expanded using DISCUS [131] to include symmetrically equivalent positions

before refinements were carried out using PDFFIT.

5.13.3 Fitting

Since the refinement for La0.48Ca0.52MnO3 and Pr0.48Ca0.52MnO3 at 10 K involved a large number of

parameters, the PDFs were first examined at the scale of a few unit cells in order to determine which

experimental parameters gave a good fit. The Rietveld refined unit cell was used as a starting point and
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refinements were carried out in the range 1.7-15 Å, in which range it seemed likely that the q/a∗ = 0.5

supercell would be a reasonable fit (this was further supported by later findings that indicate that the

PDF varies only slightly with q/a∗).

The refinement of the experimental parameters and isotropic temperature factors still left an unac-

ceptably poor fit with Rwp > 20 (where Rwp is defined as in equation 32, but using the observed and

calculated values of G, not y). In both the simulations of La0.48Ca0.52MnO3 and Pr0.48Ca0.52MnO3

the first (Mn-O) peak was sharper by a factor of three in the simulation compared to experiment. A

plausible explanation for this is that in the q/a∗ = 0.5 superstructure the number of different Mn-O

bonds is very restricted compared to in a superstructure with, for example, q/a∗ = 0.48.

For La0.48Ca0.52MnO3 the initial superstructure was taken from the Rietveld refinement discussed

in Section 5.12, and the atoms were allowed constrained motion in the form of a transverse displacement

wave as shown in Figure 45. Refinements were made in which atoms were allowed to move without

constraint, but in every case (just moving O; just moving O on 8d positions; just moving Mn etc.) this

worsened the fit. This occurred both when the refinement parameters were set to force the refinement

to converge extremely fast, or when the parameters allowed slow convergence (which takes longer but

decreases the probability of the refinement becoming trapped in a local minimum). For models in the

range 1.7-15 Å the best fit that could be obtained for La0.48Ca0.52MnO3 was Rwp=22%; if the first peak
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Figure 46: Refinement of La0.48Ca0.52MnO3 data at 10 K in the range 2.3-15 Å, displayed with the
experimental PDF and the difference between the experimental and refined PDFs.

was excluded by refining the model in the range 2.3-15 Å, the fit could be improved to Rwp=11.5%. As

can be seen from Figure 46, this fit matches the positions of all the principal peaks closely, with small

differences in peak heights.

By contrast, the refinements for Pr0.48Ca0.52MnO3 showed a dramatic improvement when the atoms

were allowed unconstrained motion; the fit improved from Rwp=20% to 13.3% in the range 2.3-15 Å,

slashing the difference in Rwp between Pr0.48Ca0.52MnO3 and La0.48Ca0.52MnO3 from 8.5% to 1.8%.

This fit is shown in Figure 47. Thus although the superstructure of La0.48Ca0.52MnO3 can be well

described by a sinusoidal transverse wave superimposed on the Rietveld structure, a reasonable fit of

the Pr0.48Ca0.52MnO3 data can only be found if the atoms move independently; this suggests that the

Pr0.48Ca0.52MnO3 superstructure is less sinusoidal than the La0.48Ca0.52MnO3 superstructure.

In order to more fully explore the nature of the La0.48Ca0.52MnO3 superstructure, PDFs generated

for different values of the wavenumber and the amplitude A of the modulation were compared to

experiment. Superstructures were generated for different values assuming a sinusoidal modulation.

Two methods were used to make the comparison. In the first, the PDF was calculated from the

input structure and the sum squared difference between this PDF and the experimental PDF was

then calculated at each value of r. In the second method the PDF was refined before the difference

was calculated. These two methods were compared because refining takes a substantial amount of

computer time and it was hoped that the calculation would allow the area of interest to be identified,
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Figure 47: Refinement of Pr0.48Ca0.52MnO3 data at 10 K in the range 2.3-15 Å, displayed with the
experimental PDF and the difference between the experimental and refined PDFs.

and the refinement could then be used to pinpoint the values at the minimum. The range of values

used was q/a∗ = 0.45–0.5 with an increment of 0.001 and A = 0–0.1a with an increment of 0.0025.

The amplitude of the modulation of the La and Ca atoms was scaled in proportion to the modulation

of the Mn and O atoms.

For the calculated PDF the least squares difference was found to occur at q/a∗=0.493 and A=0.020a

in the range 1.5-40 Å (q/a∗=0.480, A=0.015 in the range 1.5-20 Å). These results are shown in Fig-

ure 48 When the PDFs were refined before carrying out the least squares calculation, this changed

to q/a∗=0.463, A=0.0175 in the first range (q/a∗=0.462, A=0.0150 in the second range). Although

these differences in q/a∗ may seem large, it should be noted that the variation of goodness of fit with

wavenumber is not large when compared to the variation of the goodness of fit with A. This can be seen

from Figure 49, which shows the variation of goodness of fit for A=0.0175. These results demonstrate

that the calculated PDF allows the region of interest for different parameters to be obtained.

The relative magnitudes of the two modulations (x and x′ in Figure 45) were varied, and the

results are shown in Figure 50. The minimum was found for A (corresponding to x)=0.0175 and A2

(corresponding to x′)=0.015.

The effect of varying the strength of the electron-lattice coupling was investigated using the sine-

Gordon equation (the continuous version of the Frenkel Kontorova model, which was discussed in

Section 4.10). In the modulated manganite studied here, the nature of the order parameter ψ(r) is
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not established [82]. Here it is expressed in terms of the corresponding order parameter ψ0(r) in the

absence of modulations as ψ(r) = ψ0(r)e
i(Qc.r+φ(r)) where r is the spatial coordinate, Qc is a vector

commensurate with the lattice and φ incorporates incommensurability [67].

In the sine-Gordon equation the magnitude of the wavevector, phase and electron phonon coupling

strength are related by:

(∇φ− q′)2 + V cosφ = 0 (34)

where q′ is the mismatch of q/a∗ from 0.5 if V=0, and V is the coupling parameter between the

superstructure and the lattice. This produces a relationship between φ and x as shown in Figure 51

(since the superstructure is one dimensional, the equation is studied only in its one dimensional form).

Note that q is the gradient of this line (the average q is the average gradient). Thus q ′ = 0.5−q/a∗ only

if V=0. Introducing a finite V means that the variation of φ with x is no longer linear. A variation

in V will change the average gradient of the line and will thus change q. Therefore the relationship

between φ and V was calculated, and then the gradient of the line was altered to give the value of q/a∗

which is observed.

As can be seen from the Figure 52, the difference between the experimental and calculated PDF
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is stable from V=0 to around V=0.0035, and then increases up to V=0.01. Above this value, the

difference stabilises. This suggests that V lies in the range 0-0.0035, which makes the cosφ term small

compared to the (∇φ− q′)2 term, indicating a weak electron-lattice coupling.

5.14 Discussion

The heat capacity results presented in this section indicate that the transitions in La0.48Ca0.52MnO3

and Pr0.48Ca0.52MnO3 are continuous. The neutron PDF analysis of La0.48Ca0.52MnO3 indicates that

the electron-lattice coupling is weak. The results of the neutron PDF analysis for Pr0.48Ca0.52MnO3

indicate that the modulation is not as smoothly varying as for La0.48Ca0.52MnO3; nevertheless, TEM

measurements show the modulation to be uniform at the level of seven unit cells.

86



 1850

 1860

 1870

 1880

 1890

 1900

 1910

 1920

 1930

 1940

 1950

 1960

 0  0.002  0.004  0.006  0.008  0.01

(E
xp

er
im

en
ta

l P
D

F
 -

 C
al

cu
la

te
d 

P
D

F
)2

V

Figure 52: Graph showing how the sum squared difference between experimental and calculated PDFs
varies with V , the parameter which reflects the strength of the electron-lattice coupling.

87



88



6 Strain control of superstructure in La0.5Ca0.5MnO3: further

evidence for weak charge-lattice coupling

6.1 Introduction

As discussed in Section 3.8, the phase which forms in a manganite sample depends on a range of

parameters [70, 98, 132–135], one of which is strain [74, 75]. Thus the strain state in a sample is

expected to influence the phase which forms in the sample. It has previously been suggested that

varying the strain state of La1−xCaxMnO3 (x ≥ 0.5) will influence the superlattice [98]. This chapter

is an account of work that realises this suggestion experimentally.

In order to vary strain systematically, it is desirable to have a continuous, untwinned crystal lattice

in order to minimise extrinsic effects. Chemical phase separation prevents the growth of bulk single

crystal La1−xCaxMnO3 (x ≥ 0.41) [136]. However, it is possible to form a continuous crystal lattice

by growing a coherently strained epitaxial film of La0.5Ca0.5MnO3, as is described later in this sec-

tion. The composition La0.5Ca0.5MnO3 was chosen for this experiment because optical spectroscopy

measurements show a “pseudogap” in La1−xCaxMnO3 that is largest at x = 0.5 [93], indicating that

superstructure reflections will be strongest at this composition.

In polycrystalline La0.5Ca0.5MnO3, q/a
∗ exhibits values between 0.45 and 0.5 at 90 K (the inter-

granular variation is up to 9%; the intragranular variation is less than 1%) [38, 77, 80, 137]. Below the

Néel transition temperature TN ∼ 135 K (on cooling) [77] the positions of the superstructure reflections

appear to stabilise, and it is assumed that in the absence of extrinsic factors q/a∗ would take the value

0.5. The superstructure persists up to the Curie temperature of TC ∼ 220 K, and for TN < T < TC,

q/a∗ is hysteretic and incommensurate [77].

6.2 La1−xCaxMnO3 thin film properties and phase diagram

Much information can be gained from studying polycrystalline samples, but since extrinsic properties

vary randomly from grain to grain it is difficult to deduce intrinsic properties of the materials. Thin

films can be grown to have a uniform strain, which offers the possibility of systematic study of the

effects of strain on the properties of manganites. The fact that strain is always present in thin film

samples produces a different phase diagram to that for polycrystalline samples (which was described

in Section 3.4). The work of J.C. Chapman [138] and D. Sánchez [139] indicates that a phase which

is to some degree ferromagnetic is present for x < 0.42, and there is an area of the phase diagram for

which the samples appear neither ferromagnetic nor charge ordered, termed the paramagnetic insulator

(PMI) phase.

Previous work on films in the composition range 0.5 ≤ x < 0.9 has primarily either used resis-
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tance and magnetisation measurements to probe the large scale properties of the films over a wide

temperature range, or examined the structure of the films at room temperature using TEM. The ear-

liest measurements of thin films of La1−xCaxMnO3 for x ≥ 0.5 were carried out by Lawler et al. and

found the films to be insulating down to low temperatures, though this was not explicitly attributed

to charge order [140]. The first measurements of La0.5Ca0.5MnO3 on NdGaO3 found the ground state

to be ferromagnetic [141, 142]. Most subsequent studies have examined films grown on SrTiO3, but

Xiong et al. have compared La0.5Ca0.5MnO3 films on NdGaO3 and SrTiO3 [143]. They found that on

both substrates the resistivity and magnetisation increase with decreasing temperature, though both

have lower values for films on NdGaO3 than on SrTiO3.

Lebedev et al. have studied the microstructure of manganite thin films on SrTiO3 using TEM [144,

145]. They found structure in plan view at a scale of 10 nm for high quality films, which is suggested

as a possible mechanism for the accommodation of the epitaxial film-substrate mismatch.

6.3 Experimental method

6.3.1 Growth of film

The film used in the superstructure control experiments and the film grown on SrTiO3 were grown by

J.C. Chapman; other films were grown by the L.E. Hueso or the author, as indicated.

Films were grown by pulsed laser deposition. First a substrate with in-plane lattice parameters

similar (to within 2%) to those of the compound which was being grown was chosen. The substrates

chosen in this experiment were NdGaO3 (NGO) and SrTiO3 (STO). The substrate was placed in a

vacuum and heated to ∼800◦C. A flowing oxygen ambient of 15 Pa was then introduced. Pulses from

an ultraviolet KrF eximer laser were fired onto a polycrystalline target of the material which was to

be grown (in this case an La0.5Ca0.5MnO3 target from Praxair, USA). The laser has a wavelength of

248 nm and an average fluence of 1.5 J.cm−2, a repetition rate of 1 Hz and the target-substrate distance

of 8 cm. The material of the target was vapourised by the laser pulse and formed a plume. A thin film

was then formed on the substrate by physical vapour deposition. The film was then annealed for one

hour in 60 kPa O2 at ∼800◦C.
The a lattice parameter of NdGaO3 at the 90 K nominal base temperature of the microscope stage

is 0.48% smaller than the a lattice parameter of La0.5Ca0.5MnO3, and the mismatch in c is 0.35% in

the opposite sense (see Table 8). For SrTiO3 the a lattice parameter at 90 K is 1.2% larger than the a

lattice parameter of La0.5Ca0.5MnO3, and the mismatch in c is 0.66% in the same sense (see Table 8).

The films were then characterised by examining them in an atomic force microscopy (AFM), which

gives information on the quality of the surface of the film, and by high resolution X-ray diffraction
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∆a at 90 K ∆c at 90 K ∆a at 300 K ∆c at 300 K
NGO -0.48% 0.35% 0.17% 1.19%
STO 1.2% 0.66% 1.76% 1.57%

Table 8: Mismatch of in-plane lattice parameters of La0.5Ca0.5MnO3 to NdGaO3 and SrTiO3 at 90 K
and 300 K. Positive numbers refer to the La0.5Ca0.5MnO3 parameter being smaller than the substrate
parameter, so the film is stretched. Data from [52, 146, 147].

(HRXRD), which gives information on the film quality and sample thickness. The thickness of the film

used in the superstructure control experiments was 44 ± 2 nm thick as measured by high resolution

X-ray diffraction (HRXRD). This thickness is sufficiently low to preserve cube-on-cube epitaxy. An

X-ray rocking curve with a FWHM of 0.10◦ for the (004) film reflection was recorded, and a typical

value for surface roughness as measured by atomic force microscopy was ∼ 0.5 nm.

6.4 Magnetisation and resistance measurements

A ferromagnetic signal detected below room temperature reached an apparent saturation magnetization

of 0.6 µB/Mn at 90 K as demonstrated in Figure 53, with no evidence for the antiferromagnetic

transition that is observed in the bulk above 100 K [69]. Similarly, no transitions were seen in the

electrical resistivity, which was 0.02 Ω.cm at 300 K and remained insulating down to 80 K, below which

temperature the high resistivity of the sample prevented further measurements.

Two other films were measured, one of which was found to have a superstructure at low temperatures

and the other of which did not. The one which exhibited the superstructure gave a FM signal, and

the film in which no structure formed did not show a FM signal. This suggests that in thin films of

La0.5Ca0.5MnO3 on NGO the formation of a superstructure is associated with FM.

6.5 Comparison of superstructure in films grown on NGO and STO sub-

strates

Superstructure modulations were observed in both traditionally prepared thin film samples and thin

film samples prepared using the FIB microscope. This is the first explicit observation of superstructure

modulations in a manganite thin film.

A simple manipulation of the low temperature superstructure was achieved by using different sub-

strates. Films grown on NGO gave diffraction patterns in which superstructure reflections appeared

along only one axis as shown in Figure 54. Films grown on STO were twinned such that direction

of the orthorhombic a axis at a given point could take one of two perpendicular directions, giving

diffraction patterns in which superstructure reflection appeared along two axes as shown in Figure 55.

This difference occurs because the symmetry of the substrates is different, and so the symmetry of
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Figure 53: Magnetisation-field hysteresis loops for La0.5Ca0.5MnO3 thin film on NGO. Data taken with
the assistance of L. Hueso.

the films is different. STO has a cubic structure whereas NGO has an orthorhombic structure (see

Section 6.3.1). Dark field imaging carried out by J.C. Loudon showed small, complementary regions

of different twins, which correspond to the two possible ordering directions for the superstructure, as

shown in Figure 56. The regions extend over a length scale of 50-100 nm.

6.5.1 Preparation of La0.5Ca0.5MnO3 thin film on NGO in FIB microscope

A sample of the La0.5Ca0.5MnO3 film on NGO which gave the magnetisation-field loops shown in

Figure 53 and the diffraction patterns shown in Figure 54 was prepared for transmission electron

microscopy (TEM) by conventional grinding to 50 µm, and processing using the FIB microscope (see

Figure 57).

The basis of the FIB is a liquid gallium source which self assembles into a very sharp tip at high

voltage. Ga+ ions are extracted from this tip and focused on the sample. The impinging ions either

implant themselves or sputter material from the surface of the sample. Repeated scanning or dwelling

over a region can create features by sputtering material from the surface. Secondary electrons produced

by the bombardment are used to form an image of the sample by rastering across the sample in an

analogous manner to an SEM [148]. In this experiment an extraction voltage of 30 kV was used.
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Figure 54: Diffraction patterns for La0.5Ca0.5MnO3 thin film on NGO. (a) shows a room temperature
diffraction pattern in which no superstructure reflections appear and (b) shows a diffraction pattern
taken at 90 K in which the superstructure reflections are clearly visible, although the central part of
the film is overexposed. (c) shows a diffraction pattern in which the exposure is limited to a reasonable
level, demonstrating the weakness of the superstructure reflections.
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Figure 55: Diffraction pattern for thin film grown on SrTiO3. The diffraction pattern was taken at
90 K and shows twinning. Only the axes for one twin are shown.
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Figure 56: Twins of two different orientations of the low temperature superstructure are imaged by
taking two dark field images, one from each of the circled reflections in the diffraction pattern shown as
the insert of (a), and superimposing them. (As before, only one of the twins has been indexed). One
dark field image has been tinted red and the other turquoise, and the lack of overlap between the two
colours indicates that the two superstructure orientations do not coexist. The structure of the regions
can be seen more clearly in (b). Data taken by J.C. Loudon.
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Figure 57: (a) Sample preparation of a “rectangle” in an FIB microscope. (b) Cross section view
of sample preparation. A beam of Ga ions in direction “A” was used to mill away substrate from
underneath the film. A beam of Ga ions in direction “B” was then used to mill cuts, delineated with
thin black lines in the light grey region. This light grey region represents the electron transparent
window. The dark grey region represents film to which 50 µm of substrate is attached. The sample
was attached with silver glue to half of a Cu grid support with an outer diameter of 3 mm.

The sample was first observed with a low beam current (150 pA), and a suitable area, with minimal

damage to the edge of the film from grinding, was chosen. The sample was aligned perpendicular to

the beam, then tilted by 0.8◦ such that when the sample was milled the distance between the beam

and the film increased with depth, as shown in Figure 57. This avoided undercutting and minimised

film damage. Initially the substrate was cut away from underneath the film using a high beam current

(11.5 nA), then as the amount of substrate between the beam and the film decreased, successively

lower beam currents were used to minimise contamination. For beam currents above 350 pA only the

substrate was imaged to minimise damage and contamination from the Ga beam. This method is

similar to that described by Langford and Petford-Long [149] for a cross-section sample, but adapted

for a plan view sample. When the window was around 1 µm thick, the sample was rotated by 45◦

and cuts were made (from the substrate side to minimise film damage). These cuts defined a free

standing rectangular region (a “rectangle”). The sample was then rotated back to its original position

with sufficient precision to avoid an undercut during subsequent thinning of the window to electron

transparency. Material furthest from the front edge of the window in Figure 57 was therefore thickest.

A low magnification TEM picture of two rectangles is shown in Figure 58. The minimum thickness

of the window that could be achieved reliably was ∼150 nm. Thus ∼100 nm of substrate remained

attached to the 44 nm film.

6.6 Observation of La0.5Ca0.5MnO3 thin film on NGO in TEM

The sample was cooled to approximately 90 K using a Gatan double-tilt liquid nitrogen stage. Parent

lattice reflections were recorded in diffraction patterns with a CCD camera on a Philips CM300 TEM
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Figure 58: TEM image of Rectangle 1 and Rectangle 2. The material directly above the rectangles has
broken away. A crack runs parallel to the arrows in region 3.

operated at 300 kV. However, superlattice reflections were too weak to measure on the CCD without

significant over-saturation of the parent reflections. Therefore measurements of q/a∗ were extracted

from diffraction patterns recorded on photographic film, which has a sensitive non-linear response. For

this a Philips CM30 TEM operated at 300 kV was used.

6.7 Superlattice reflection identification

The software described in this section was developed with the help of Edward Rosten.

Custom written software was used in order to measure statistically significant values of q/a∗ for

each diffraction pattern. Firstly the parent lattice reflections were identified and the distortion of the

photographic film was calculated. Secondly the positions of the superlattice reflections were found.

Hence values of q/a∗ were established.

The positions of two manually identified adjacent parent lattice reflections were used to estimate

the positions of all the others, and were used to define the a∗ axis. When estimating the parent lattice

reflection positions, it was assumed that a∗ = b∗. The estimated positions of the reflections were then

refined using the mean-shift algorithm [150], and the mapping between the diffraction pattern and the

grid was calculated.

There currently exist a variety of techniques for finding the parameters of imaging systems, such

as [151], which finds the parameters of pinhole cameras, and [152] which find the parameters of a

more sophisticated model, which models nonlinearities with radial distortion. However, not only is

the imaging system in a TEM not well modelled by these, but many of the standard calibration

procedures require multiple views of a 3D scene. Instead, the data obtained in this experiment consists
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of a set of correspondences between points in the image (the lattice reflections) and a known shape

(a 2 dimensional square grid, the scale, position and orientation of which can be chosen arbitrarily).

Therefore a rather general purpose distortion model was chosen, which would include the photographic

film distortion and also the rotation, scale and shift required to line up the pattern to the grid. The

model used the projective warp (homography) which models the distortion as shear, aspect ratio change

and keystoning. This non-linear (higher order) version of the homography is written as:
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where (x, y ) are the grid coordinates and (X, Y ) are the image coordinates, normalised so that

the range of X and Y is ±1. Writing H =
(

h1,1 . . .

. . . 1

)

, first the parameters of H are found using

a linear solution and this is then refined using reweighted least-squares to minimize the image-space

error. Reweighting is required because despite the distortion model, some errors are not easily modelled.

For instance, a relatively large amount of distortion can occur nearby where the photographic film is

clamped in the scanner. Apart from the components of H required to produce the image at the correct

orientation, position and scale, the components are typically quite small, and make corrections on the

order of 2–3 pixels towards the edge of the image.

In order to find the superlattice reflections, two standard feature detectors were tested, Harris [153]

and a DoG (difference of Gaussians—the detector used for SIFT [154] features) based detector. How-

ever, due to the noisy background and the faint, sometimes overlapping nature of the features, the

performance of these detectors was poor for all but the best images. Instead, a model of the image (as

opposed to a general purpose detector) was used to achieve more accurate detection.

A diffraction pattern can be considered to be an unnormalised probability distribution, with each

pixel representing the probability that a given diffracted electron will have interacted with the photo-

graphic film at that point. In addition to linear diffraction, the electrons also undergo several non-linear

effects. The result is that from the central limit theorem, the superlattice reflections are approximately

Gaussian. There is also spreading from the main central reflection, which results in the space between

the reflections not being completely black. This spreading typically takes the form of a very shallow

gradient away from the central reflection. On the scale of a pair of superlattice reflections, this can

considered to be flat. Therefore, the image of a pair of superlattice reflections can be modelled as

a Gaussian Mixture Model (GMM) consisting of two isotropic Gaussians and a constant background

level, where the size, position and scale of the Gaussians and the scale of the background are the degrees
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Figure 59: Expectation maximisation is used to find the superlattice reflections in the highlighted area
of the diffraction pattern. The superlattice reflections are centred at ∗ and +. The circle is drawn at
one standard deviation.

of freedom. This can then be fitted using the Expectation Maximization (EM) algorithm [155, 156].

Since a reasonable initialization for EM is available—the primary axis is known and the wave vector

is quite close to 0.5a∗—the resulting algorithm is very robust and is capable of finding the positions of

very faint reflections, in high noise images. This is illustrated in Figure 59.

There is a factor which must be considered in addition to the photographic film distortion. When

a wave, wavelength λ, is incident on a lattice diffracted beams will be formed at the intersection of

a sphere of radius 1/λ, centered at the origin of the scattering event, with points in the reciprocal

lattice [43]. This is termed the Ewald sphere. In the TEM experiments described in this chapter,

electrons are accelerated by the TEM to an energy of 300 keV. Using the de Broglie equation, λ = h/p,

λ = 4.13 × 10−12 m. Thus the radius of the Ewald sphere is 1/λ = 2.42 × 1011 m−1. This is large

compared to the reciprocal lattice vector (2× 109 m−1). So it leads to a small systematic error in the

value of q that is measured and therefore which may be ignored.

6.8 Results

Figure 60 shows a map of q/a∗ in and around Rectangle 1. In order to produce Figure 60 it was

necessary to combine data from different cooling runs. For each run a measurement was always made

at point A. The average value at point A was calculated, and an offset was then applied to each of the

data sets to bring the value at point A to the average value. The magnitude of q/a∗ was highest at C,

0.8% lower at B, and 1.4% lower again inside the rectangle at A (0.4760±0.0009, 0.4710±0.0005 and

0.4646±0.0006, respectively). Similarly, for Rectangle 2, q/a∗ at points analogous to B and A differ in

the same sense by 1.3% (0.4753±0.0005 and 0.4692±0.0007 respectively). For each diffraction pattern

between 150 and 300 measurements of q/a∗ were made, with each measurement having an estimated

error of 0.3 out of 35 pixels, corresponding to an error in q/a∗ of 0.004.

At any point in the window, the measured wavenumber varied between cooling runs. The range
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Figure 60: False colour map of q/a∗ at 90 K in and around Rectangle 1 with contours of constant
q/a∗ plotted every ∆(q/a∗) = 5.8 × 10−4. Diffraction patterns were taken at the 18 points indicated,
and q/a∗ values were extracted from each using the software described in the text. Data for q/a∗ was
generated away from the 18 points by interpolation and extrapolation. The diagram combines data
from four cooling runs to 90 K. One run included data from A, B and C and other runs included data
from at least one of these points. Data from the other runs was subject to the run to run variations
described in the text. It was therefore offset prior to use as described in the text. Thermal drift is
estimated to be 0.2 nm. Note that recent measurements using a Gatan helium stage suggest that the
two 90 K values remain constant within error down to ∼15 K.
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of q/a∗ inside Rectangle 1 at point A was 2.6% (0.457 – 0.469). Outside Rectangle 1 at point C, the

range was 1.9% (0.467 – 0.476). However, in any given run, the wavenumber outside the rectangle was

always larger than the wavenumber inside the rectangle, with the run to run difference from A to C

being between 2.2% – 3.2%.

6.9 Possible causes of the observed variation

Since q/a∗ rather than q is measured, the possibility that the observed variations of a few % could be

due to variations in a∗ alone was investigated. The parent lattice reflections were recorded in different

areas of the sample above and below the ordering transition temperature of ∼ 220 K as determined

from polycrystalline samples [77]. The temperatures chosen were 300 K and 90 K, since these are

substantially above and below the polycrystalline transition (as discussed in Section 6.2 the phase

diagrams for polycrystalline and thin film samples show substantial differences). The measurements

were made with a CCD to avoid possible errors from distortion of the photographic film (which was

possible since the parent lattice reflections were much more intense than the superlattice reflections).

Variations in a∗/c∗ were ≤ 1%, which assuming c to be constant implies that variations in a∗ ≤ 1%.

The change in q/a∗ that would result from a ≤ 1% change in a∗, assuming a fixed period superlattice,

was calculated. Figure 61 shows the original scenario (a) for which q/a∗=0.47, and scenario (b) in which

the lattice reflections have moved and therefore q/a∗ = (0.47− 0.005)a∗/0.99a∗ = 0.4696a∗. Thus the
upper bound on changes in q/a∗ due to unresolved changes in a∗ is 0.1%. Therefore the spatial variations

seen in q/a∗ represent changes in q, whether or not they are driven by changes in a∗ that are beyond

the 1% resolution of the microscope.

The Ga beam of the FIB microscope might be expected to lead to contamination and damage of the

sample. Since data was only taken at points more than 500 nm from an artificial edge, the Ga beam

may have affected areas close to the artificial edges. However, the fact that there is no link between the

distance of a measurement from an artificial edge and q/a∗ indicates that there is no link between the

spatial variation in q/a∗ from the inside to the outside of the rectangle, and contamination or damage

from the Ga beam. Further confirmation came when q/a∗ near the artificial cuts was compared to q/a∗

near a natural crack, part of which runs from one arrow to beyond the other in Figure 58. It was found

that when moving from 4 µm to within 1 µm of this crack, q/a∗ was reduced by 1.3% (0.476 to 0.470).

This mimics the change in q/a∗ that was engineered in the rectangle.

The observed differences between q/a∗ inside and outside the rectangle could be caused by differences

in stress and strain, pinning or thermal effects. In the latter case, the electron beam could be heating

the rectangle, which is thermally isolated by its small neck. However, one would then expect q/a∗ to
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Figure 61: Illustration of the method of calculation of the error in q/a∗ which would result from a 1%
change in a∗. (a) shows the parent and superlattice reflections before the change in a∗, with q/a∗ = 0.47,
a typical value from our measurements. In (b), the reflections have been contracted symmetrically with
respect to the dotted line, and the superlattice reflections remain stationary. This leads to a change in
the measured value of q/a∗.

vary in a systematic way with remoteness from the neck, which is not the case. Therefore thermal

effects cannot explain the results of this experiment.

It is possible that discommensurations, which separate regions of different q/a∗, are pinned strongly

inside the rectangle due to defects at the nearby edges. In this scenario, discommensurations unable

to propagate through the neck would become trapped inside the rectangle and lead to the observed

reduction in q/a∗. In order to investigate whether this is the case, we measured q/a∗ as a function of

temperature to look for hysteresis as evidence of pinning. Temperature sweeps taken inside and outside

the rectangle both show a similar hysteresis of ∼20 K (Figure 62). The values at 90 K and 15 K were

compared using a He stage to search for a lock-in at low temperatures. Rectangle 1 had broken away

and was no longer available, but measurements were made at point B and at points analogous to A

and B on Rectangle 2. These variation of these values was smaller than the measurement errors. For

rectangle B at 90 K the values of q/a∗ at points analogous to B and A were 0.4753 ± 0.0005 and

0.4692±0.0007, while at 15 K the values were 0.4755±0.0006 and 0.4696±0.0005. The data was offset

as described in Section 6.8. This suggests that the degree of pinning is similar inside and outside the

rectangle, and that pinning does not cause the observed differences in q/a∗.

Since none of the above factors explain the experimental findings, and since the rectangle is relatively

free from the rest of the film and therefore may be able to change its strain state relative to the rest of

the film, it is suggested that small changes in strain, below the 1% resolution of the measurements of

a∗, are responsible for the observed variations in q/a∗. Indeed, changes this small can be significant.

101



0.450

0.455

0.460

0.465

0.470

0.475

 90  100  110  120  130  140  150  160  170  180

q/
a*

Temperature [K]

Figure 62: Variation of q/a∗ with temperature, inside and outside Rectangle 1. The readings were
taken at points A and B with a 1 µm uncertainty due to thermal drift of the sample during data
acquisition. The error bars are at one standard deviation of the mean.

For example, a 0.5% change of strain along the normal to the surface of a La0.7Sr0.3MnO3 film produces

a 20 K change in the Curie temperature [74].

6.10 Landau theory

The theory results presented in this section were developed by M.J. Calderón.

The relation between q/a∗ and strain was investigated using a 1D Ginzburg-Landau theory [157].

As discussed in Section 5.13.3, the order parameter is expressed as ψ(r) = ψ0(r)e
i(Qc.r+φ(r)) where r is

the spatial coordinate, Qc is a vector commensurate with the lattice and φ incorporates incommensu-

rability [67]. The wavevector is given by q = Qc+ 〈∇φ〉, where 〈∇φ〉 is the deviation of the wavevector

from the commensurate value. Since in the case considered here the commensurate value is q/a∗ = 0.5,

q = 0.5a∗ + 〈∇φ〉. Assuming that ψ0(r) is constant, the free energy density for the modulation and its

coupling with strain η can be written as [157]

F =
1

2
(∇φ− δ)2 + v

n
cos(nφ) + cη∇φ+

1

2
κη2 − ση. (36)

The first term is the elastic term that favours incommensurate modulation, with δ being the devi-

ation of q from 0.5 in the absence of strain coupling. The value of q/a∗ is always observed to be less

than 0.5 in this experiment, therefore δ < 0. Therefore δ 6= 0, as required in this analysis. The second

term is the Umklapp term that favours commensurability, where n is an integer and the coefficient v
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determines the strength of the effect. The third term couples η and ∇φ with strength c. The fourth

term is the strain energy density in terms of the bulk elastic modulus κ. The fifth term gives the elastic

energy due to the stress σ on the film from the substrate. The effect of the coupling term cη∇φ on

the wavevector can be determined in the plane-wave limit (∇φ =constant and ∇η = 0) by minimising

(36), which leads to

∇φ =
δ − cσ/κ
1− c2/κ . (37)

Two limiting cases represent the situation inside and outside the rectangle respectively: either

the film relaxes in the absence of substrate-induced stress and q is reduced by |∇φin| = |δ|
1−c2/κ to

give q = 0.5a∗ − |δ|
1−c2/κ , or the film is clamped such that the coupling cη∇φ is inactive, and thus

|∇φout| = |δ| and q = 0.5a∗−|δ|. Since |∇φin| > |∇φout| it is possible to understand why the deviation

from the commensurate value of q/a∗ = 0.5 will be larger inside a rectangle whatever the sign of c.

Note that this result is the opposite of what might be expected given that the rectangle resembles an

unstrained single crystal.

6.11 Discussion

The changes in q/a∗ which are reported in this chapter have implications for the nature of the low

temperature superstructure. The results presented in Chapter 2 and [82] indicated that the charge-

lattice coupling is weak. In the traditional strong-coupling limit, any elastic deformation of the parent

lattice should be directly transmitted to the superlattice such that ∆(q/a∗)=0. However, since, as has

been shown in this chapter, q/a∗ can vary by a much larger amount than can be due to changes in the

lattice alone, it seems that the superlattice can deform independently of the parent lattice. Therefore

the coupling cannot be considered arbitrarily strong. Moreover, in the traditional strong-coupling

picture, the changes in ∆(q/a∗) that are observed here would arise due to changes in the number of

[100] Mn4+ sheets, and these are not available at a given x. In theory, the fact that ∆(q/a∗) 6= 0 could

be explained if strain is enhanced at uncharged discommensurations [157], but discommensurations are

not consistent with a strong coupling picture at x = 0.5.

In summary, it is possible to tune the magnitude of q/a∗ by up to 3% in La0.5Ca0.5MnO3 at 90 K by

processing a thin film using an FIB microscope. This demonstrates that tuning the microstructure of

La0.5Ca0.5MnO3 can alter the low temperature superlattice. Consequently the variations in wavenum-

ber seen in polycrystalline La1−xCaxMnO3 [82, 137] may be directly attributed to strain. The fact

that ∆(q/a∗) 6= 0 may be most simply explained if the charge and lattice are weakly coupled. The

interpretation presented here supports the suggestion made in Chapter 4 and in [82] that a charge

density wave scenario may be appropriate.
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7 Conclusions and Outlook

This dissertation makes a contribution to the current controversy about the nature of the low tem-

perature superstructure in the manganites. Three pieces of evidence challenge the picture of strong

electron-lattice coupling:

1. TEM experiments (performed by James Loudon) and simulations for La1−xCaxMnO3 indicate

that the superstructure is uniform down to a scale of seven unit cells, and cannot be described

in a ‘stripe’ picture using two Mn species [82]. Neutron studies find that the low temperature

superstructure of La0.48Ca0.52MnO3 can be well modelled as a smoothly varying displacement

wave.

2. In Pr0.48Ca0.52MnO3, in which the stronger electron-lattice coupling than in Pr0.48Ca0.52MnO3

is expected, the atomic positions must be refined independently to produce a similar level of fit

to the data as that obtained for La0.48Ca0.52MnO3, indicating that the atoms do not move in a

correlated way. When observing the superstructure using TEM, q/a∗ is sometimes observed to

lock in to q/a∗ = 0.5. However, in the areas for which q/a∗ < 0.5, the period of the superstructure

is uniform down to a scale of seven unit cells.

3. The superstructure has been manipulated by attempting to control the level of strain in an

La0.5Ca0.5MnO3 thin film. The spatial variation of the superlattice indicates that the super-

structure is not strongly tied to the parent lattice.

A further auxiliary point is that heat capacity data for La0.5Ca0.5MnO3, La0.48Ca0.52MnO3 and

Pr0.48Ca0.52MnO3 is consistent with a second order transition. Therefore it seems that the superstruc-

ture is not coupled to the lattice as strongly as expected in La1−xCaxMnO3 and Pr0.48Ca0.52MnO3.

In the future, it would be interesting to extend the neutron PDF analysis to compare Pr0.48Ca0.52MnO3

and La0.48Ca0.52MnO3 more fully. By obtaining heat capacity and magnetisation results for a wider

range of compounds, it may be possible to gain some insight into the factors which affect the properties

of the transitions. Also, by examining the wavenumber values in a wider range of materials it may be

possible to determine more fully the factors which influence how likely the superstructure is to lock in

to the parent lattice.

To obtain some insight into the factors which determine whether an La0.5Ca0.5MnO3 thin film will

form a low temperature superstructure, the thin films could be examined using Raman scattering. If

the level of oxygenation is the factor which deterimines whether or not a superstructure can form, it

may be useful to examine films that have been treated under different deoxygenation conditions. Also,
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by annealing a ‘rectangles’ sample; it may be possible to create a sample in which some areas of the

film form a low temperature superstructure and others do not.

The possible link between the mismatch of q/a∗ and 1 − x and ferromagnetism could be probed

in two ways. Firstly, a polycrystalline sample could be examined and areas with different q/a∗ could

be imaged using holography to determine the magnetic fields at those points. Secondly, a ‘rectangle’

sample could be imaged holographically to determine whether the magnetic field inside and outside the

rectangle are different.
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8 Appendix A

8.1 Low temperature fitting

The low temperature data (0–15 K) is modelled with a polynomial of the following form:

h = l1t
3 + l2t

5 + l3t
2 , (38)

where h is the heat capacity, t is the temperature and l1 . . . are the coefficients. The fitting is performed

using a Vandermonde matrix. Putting all the measurements in matrix form:











t31 t51 t21
t32 t52 t22
...

. . .
...

t3N t5N t2N















l1
l2
l3



−











h1

h2

...
hN











=











e1
e2
...
eN











, (39)

or

T l− h = e , (40)

where e are the errors between the modelling function and the measurements. The sum squared error

(ε) is:

ε = eTe (41)

= (T l− h)T(T l− h) (42)

= lTTTT l− 2lTTTh+ hTh. (43)

Minimizing ε gives:

∂ε

∂l
= 0 (44)

2TTT l− 2V Th = 0 , (45)

so

l = (TTT )−1TTh , (46)

or

l = T †h. (47)

This is the well known result where T is the Vandermonde matrix. Here it is solved using weighting to

reduce the importance of low accuracy measurements:
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









w1t
3
1 w1t

5
1 w1t

2
1

w2t
3
2 w2t

5
2 w2t

2
2

...
. . .

...
wN t

3
N wN t

5
N wN t

2
N










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l1
l2
l3


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





w1h1

w2h2
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wNhN


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=
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w2e2
...

wNeN
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







, (48)

where w are the weights. These are available in the data (for some datasets). The result of this

computation is θd:

θd =
3

√

8.315× 12π4

5l1
. (49)

This function also returns γ = 0.

8.2 High temperature fitting

The Gauss-Newton method with iterative reweighted least-squares is used to fit the function because

the coefficients of the function are non-linear. Unlike in the previous section, this time, there is an

arbitrary function modelling the data:











f(t1,µµµ)
f(t2,µµµ)

...
f(tN ,µµµ)











−











h1

h2

...
hN











=











e1
e2
...
eN











. (50)

Where f is the function modelling the data, with parameters µµµ. Performing a Taylor series expansion

around µµµ = µµµ0 gives:










f(t1,µµµ0)
f(t2,µµµ0)

...
f(tN ,µµµ0)











+ J0δµµµ0 −











h1

h2

...
hN











=











e1
e2
...
eN











, (51)

where J is the Jacobian—the differential of f with respect to µµµ. Finding the δµµµ0 to minimize the sum

squared error gives:

δµµµ0 = (J0
TJ0 + λI)−1JT











h1 − f(t1,µµµ0)
h2 − f(t2,µµµ0)

...
hN − f(tN ,µµµ0)











. (52)

The λI term stabilizes the equations. As λ gets large, the solution becomes gradient descent instead

of Gauss-Newton. The equations are solved by setting µµµ1 = µµµ0 + δµµµ0 and iterating. Weighting is

performed as in the previous section, except the weights are computed as a function of the errors

(w = 1
1+ke2 ), instead of read from the data.
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