
2.5 × 1.8 mm (ref. 9). As STED is a scanning technique, increasing the 
field of view decreases the frame rate. SSIM is not limited in this way 
because it is a wide-field technique; however, SSIM also requires a 
specialized microscope and can be prone to deconvolution artifacts4, 
and biological high-resolution images obtained using SSIM have not 
yet been published. Non-saturated structured illumination (SIM) 
has been carried out at frame rates up to 11 Hz in live cells11 but can 
provide around 100 nm resolution at most.

Current localization techniques require images in which the 
fluorescence emission from individual fluorophores does not 
overlap. This limits the number of fluorophores that can be local-
ized in a given frame and thus the timescale at which useful 
images of complex structures can be acquired. Achieving the non- 
overlapping fluorophore emission necessary for conventional local-
ization microscopy analysis requires switching a large fraction of 
probes into a non-emitting state. This is done either by activating 
small populations of fluorophores (usually using near-UV light) 
while imaging with longer wavelengths5,6,12 or by keeping a large 
fraction of the probes in a non-emitting state using relatively high-
intensity illumination (kW cm–2) at a single imaging wavelength 
under suitable chemical conditions13,14. These wavelengths and 
intensities have been shown to damage live samples15. Current 
localization techniques have, however, allowed localization-based 
imaging of simple structures in live cells at a temporal resolution of 
10 s without near-UV activation light7 and at a temporal resolution 
of 0.5 s with near-UV activation light10.

Another method that uses fluorescence blinking to boost the 
achievable resolution is called super-resolution optical fluctua-
tion imaging (SOFI) and has been shown to improve images of 
samples labeled with quantum dots and organic dyes16,17. This 
method assumes that the blinking of neighboring fluorophores 
is uncorrelated and uses the temporal correlation between pix-
els of the image to sharpen the effective point-spread function. 
Analyzing 1,000-frame datasets of biological samples leads 
to a 1.4- to 2-fold improvement in resolution17. There are two 
other image analysis methods that are able to deal with relatively 
dense localization data: DAOSTORM18 and simultaneous mul-
tiple emitter fitting19. These methods can analyze localization  

We describe a localization microscopy analysis method that is 
able to extract results in live cells using standard fluorescent 
proteins and xenon arc lamp illumination. Our Bayesian analysis 
of the blinking and bleaching (3B analysis) method models the 
entire dataset simultaneously as being generated by a number 
of fluorophores that may or may not be emitting light at any 
given time. The resulting technique allows many overlapping 
fluorophores in each frame and unifies the analysis of the 
localization from blinking and bleaching events. By modeling 
the entire dataset, we were able to use each reappearance 
of a fluorophore to improve the localization accuracy. The 
high performance of this technique allowed us to reveal the 
nanoscale dynamics of podosome formation and dissociation 
throughout an entire cell with a resolution of 50 nm on a 4-s 
timescale.

High-resolution optical microscopy methods have pushed the reso-
lution of a microscope system beyond the Abbe limit by using a 
nonlinear sample response to illumination light1. This result is often 
achieved by switching fluorophores between a dark and a bright 
state2. Stimulated emission depletion (STED) can be used to shrink 
the effective size of the scanning beam in a confocal system3; satu-
rated structured illumination (SSIM) can extract information hid-
den in the moiré patterns produced when a grating is projected onto 
the sample4; and localization microscopy techniques, such as pho-
toactivatable localization microscopy (PALM)5 and stochastic opti-
cal reconstruction microscopy (STORM)6, build a high- resolution 
image from the localized positions of many single fluorophores. 
The application of these techniques to live-cell imaging promises 
dynamic information on complex protein structures with nanoscale 
resolution7–10. The ideal microscopy technique would be experi-
mentally simple and fast and would have the property that switching 
between fluorophore states would not damage the sample. However, 
several factors still limit the utility of high-resolution microscopy 
techniques for live-cell imaging applications.

STED requires a specialized microscope and a complex alignment 
procedure. On live cells, STED has achieved 28 frames per second at 
62-nm resolution with low photon numbers over a field of view of 
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position. This 3B analysis method allowed us to perform localization 
microscopy with a spatial resolution of 50 nm and a temporal reso-
lution of 4 s on podosomes in living cells expressing a monomeric 
(m)Cherry fusion of a truncated talin construct. Resolution here is 
defined as the smallest distance at which two talin strands can be 
separated, and the localization is defined as the apparent full width 
at half maximum (FWHM) of a strand of talin. We found that podo-
somes frequently have a polygonal structure and are highly dynamic 
over a timescale of tens of seconds.

resulTs
Standard fluorescent proteins have been shown to blink and bleach 
in a live-cell environment, even under illumination from standard 
non-laser light sources. We developed the 3B analysis method to 
model an entire dataset consisting of a sequence of high-frame-rate 
images generated from large numbers of fluorescent proteins or 
other fluorophores undergoing blinking and bleaching processes. 
We modeled the entire dataset using a factorial hidden Markov 
model23. In this Bayesian technique, the state of a system at a certain 
time point is determined by both a transition matrix and the state 
of the system at the previous time point. The state of the system is 
statistically linked to the measured data (the link is not direct, as 
the measurement process itself is subject to noise). To render the 
calculation both accurate enough for optimization and algorithmi-
cally tractable, we hybridized two hidden Markov model inference 
methods: the forward algorithm24 and Markov chain Monte Carlo 
sampling (MCMC) (Online Methods). We calculated many statisti-
cal samples of the model parameters, used these samples to generate 
fluorophore positions and built a probability map of the positions 
of the fluorophores taken from these samples. Each calculation of a 
particular set of model parameters used samples of the state taken 
using MCMC and generated a set of fluorophore positions using a 
maximum a posteriori (MAP) calculation.

If there were multiple models that fitted the data well, then it was 
very likely that we had samples of both models. At the end, we mar-
ginalized out the fluorophore state to give a distribution of fluoro-
phore positions. Using this method, any ambiguity will cause the 
final model to be blurred out, making it unlikely that one would 
report falsely high resolution where there is actually ambiguity 
(where resolution is defined as the ability to image two fluorophores 
or line structures as separate). Although there exists only one model 
that corresponds to the real world, given the data, it is not possible to 
decide which one this model is, and averaging a multitude of models 
that are close to being correct seems to be an effective way of repre-
senting the underlying structure. A subtle yet key point is that this 
analysis is integrating over the parameters (both state sequences and 

microscopy data that contain some overlapping fluorophores in 
each image, but they do not use the reappearance of fluorophores 
to improve localization.

Podosomes are cytoskeletal structures associated with cell adhe-
sion, migration and degradation of the extracellular matrix20,21. 
They consist of an actin core surrounded by a ring of integrin- 
associated proteins such as talin and vinculin. This ring was thought 
to be roughly round, and the podosomes were thought to form and 
dissociate over a period of about 5–10 min. In wide-field images, the 
process of formation and dissociation appears as a fading out of the 
structure22, although we have also seen instances where the podo-
some appears to slowly unwind.

Here we present a Bayesian localization microscopy method that 
allows localization data to be extracted from wide-field images of 
live cells labeled with a standard fluorescent protein. Our method 
allows the use of data from overlapping fluorophores as well as 
the use of information from bleaching events, blinking events and 
changes caused by fluorophores being added or removed in the cell. 
We carried out high-frame-rate imaging on a standard wide-field 
microscope with xenon arc lamp illumination. We used a Bayesian 
technique to model the resulting high-density fluorophore image 
data as arising from a number of fluorophores, each of which can 
emit light but which do not necessarily emit light in every frame. 
By modeling the whole dataset as arising from a number of fluo-
rophores, we were able to use all of the fluorophore reappearances, 
even those in non-adjacent frames, and thus use all the photons 
collected from a fluorophore to improve our determination of its  
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Figure 1 | Correlative measurements using PALM imaging and Bayesian 
localization imaging on tubulin. (a,b) Wide-field images created by averaging 
all the frames in the PALM image dataset of PA-GFP–tubulin (a) and by 
averaging all of the frames in the Bayesian localization image dataset of 
mCherry-tubulin (b). (c,d) Super-resolution images generated by analyzing the 
PALM PA-GFP–tubulin dataset from a using a standard PALM analysis5 (c) and 
by analyzing the mCherry-tubulin dataset from b using a 3B analysis (d). (e) An 
image generated from the PAGFP dataset from a using a 3B analysis. (f) Overlay 
of c and d. Green arrows indicate regions with differences in apparent structure 
that arise from labeling differences. Linescans corresponding to lines i–iii are 
shown in g–i, respectively, with the 3B analysis data shown in blue, PALM data 
shown in pink, the 3B analysis PALM data shown in green and the wide-field 
data shown in black. Scale bars, 1 mm. AU, arbitrary units.
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all continuous parameters; see Supplementary Note). The output is 
not a single model; rather, the output is an ensemble of models for 
different samplings of the state sequences. For each model in the 
ensemble, the optimized positions of the fluorophores are shown, 
but these positions are also integrated out when making the deter-
minations of the number of fluorophores in the image. So the out-
come of the analysis does not include a specific state sequence; the 
outcome has integrated over a sampling of different possible state 
sequences.

correlative results
To verify that the 3B analysis produces a result that reflects the 
underlying structure when used on experimental (rather than 
simulated) data, we performed correlative experiments. We chose 
to label tubulin because the network of tubulin strands gives rise 
to strands crossing at many different distances and angles, which 
allows the resolution to be assessed by determining when the strands 
can be distinguished. We labeled tubulin with PA-GFP for PALM 
imaging and with mCherry for Bayesian localization imaging using 
a 3B analysis (Fig. 1). The wide-field images we created by averag-
ing the frames in the two datasets (Fig. 1a,b) showed that not all 
features visible in one dataset are visible in another, as the incorpo-
ration efficiencies of mCherry and PA-GFP into the microtubule 
vary. The incorporation of these proteins into the microtubule was 
low, so some areas had more mCherry-tubulin and other areas had 
more PA-GFP–tubulin. Some areas that showed a particularly clear 
discrepancy between the labeled areas even in the wide-field micros-
copy images are indicated with green arrows (Fig. 1a–f).

Using a 3B analysis, we created a probability map by building up 
many MAP positions obtained from different samplings of state 

sequences (Fig. 1d). As a result of the high amount of fluorophore 
overlap in all the frames, this mCherry data was not analyzable using 
standard localization microscopy analysis techniques. With the 
exception of the labeling discrepancies noted above, the 3B analy-
sis results (Fig. 1d) were in good agreement with the PALM data  
(Fig. 1c),with features separated by distances as small as 100 nm 
being  visible in both datasets; and when features were present in 
both datasets, they agreed to a high resolution, as shown in the 
overlay of the PALM and 3B analysis images (Fig. 1f). Additionally, 
applying the 3B analysis to the PALM dataset yielded a very similar 
structure as the original PALM analysis (Fig. 1e).

experiments on fixed podosomes
We immunolabeled vinculin in fixed podosome samples with Alexa 
488 and mounted the samples in PBS (pH 7.25) with 100 mM 2- 
mercaptoethanol that we added as a reducing agent to induce blink-
ing14 (Supplementary Fig. 1). We illuminated the sample using a 
laser at 488 nm with a nominal power of 1kW cm–2. We collected 
a series of 300 images, with collection taking a total of 6 s. A video 
of the raw data is shown as Supplementary Video 1. It is notable 
that there were many overlapping emitting fluorophores in the 
majority of the frames. This prevented us from using the standard 
thresholding and fitting-image analysis techniques normally used 
to reconstruct PALM or STORM images. A typical wide-field image 
obtained by averaging all 300 images is shown as the background 
in Figure 2a. An example of the MAP positions created from one 
sampling of the 3B analysis is shown in red in Figure 2a (many MAP 
positions were combined to create the final probability map, shown 
in Fig. 2b).

The apparent thickness of the vinculin strands varied between 
6 nm and 60 nm, with the variation probably arising from varia-
tion in the number of fluorophore reappearances in different areas, 
the number of photons detected in one appearance and variations 
in the distribution of vinculin. The structure of the podosome was 
geometrical, which is in agreement with recent high-resolution 
microscopy observations obtained using STED and SIM (at a reso-
lution of approximately 120 nm) (M. Walde, J.M., G.E.J., R.H., S.C., 
unpublished data). The higher resolution revealed a small structure 
joining the two podosomes.

We applied the 3B analysis to an entire cell (Fig. 2c–g). This appli-
cation revealed a small number of podosomes with a diameter of less 
than 300 nm, well below the standard diameter of around 500 nm 
(Fig. 2e), which only appeared as a blob of brightness in the wide-
field image. As in SIM and STED studies of podosomes (M. Walde, 
J.M., G.E.J., R.H., S.C., unpublished data), vinculin strands tended 
to bind at angles of 120–130° (Supplementary Fig. 2).

experiments on podosomes in living cells
We generated cells from the human acute monocytic leukemia cell 
line THP1 that stably expressed an mCherry-tagged, truncated talin 
construct (amino acids 1,974–2,541) using lentiviral gene transduc-
tion. The resulting talin mutant comprised the second integrin bind-
ing domain of talin and has previously been shown to be an excel-
lent marker of podosome rings in living cells25. We illuminated live 
samples (maintained at 37 °C) with a mercury arc lamp supplying 
a nominal power (measured before the objective) of 12 W cm–2 to 
the sample in the wavelength range of 615–687 nm and acquired a 
series of 5,000 images at 50 frames per second. An example of the 
data obtained from this experiment is shown as Supplementary 

c d

e f g

a b

Figure 2 | A 3B analysis of vinculin in fixed cells containing podosomes and 
labeled with Alexa 488. (a) An example of a maximum likelihood estimate 
for one set of MCMC samples superimposed on a wide-field image created 
by averaging all 300 images. (b) A probability map created by combining 
MAP positions created using different sets of MCMC samples. Scale bars, 
500 nm. (c,d) A whole cell showing a wide-field (c) and 3B analysis (d). The 
green rectangle corresponds to the enlarged image in e, the blue rectangle 
corresponds to the enlarged image in f, and the white rectangle corresponds 
to the enlarged image in g. Scale bars, 500 nm (a,b); 2 mm (c,d); and 500 
nm (e–g).
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by distances larger than the resolution of the system on time-
scales smaller than the acquisition time for a single reconstructed 
high- resolution image. We chose podosomes as a suitable test sys-
tem for our imaging analyses, as they form and dissociate over a 
period of several minutes, and most podosomes do not appear to 
move around the cell during this time (if podosome movement is 
observed, it is generally restricted to a few hundred nm).

We observed podosomes undergoing assembly and two differ-
ent modes of breakdown. In the first mode of podosome break-
down, the podosome shows a small break, and then one end of the 
break gradually retracts, producing an ‘unwinding’ effect (Fig. 3a). 
This retraction seems to be associated with the formation of small 
(250 nm in diameter) struts in the region of the cell where the podo-
some is being dissociated. In the second mode of podosome dis-
sociation, struts (approximately 450 nm in length) repeatedly form 

Video 2. We applied the 3B analysis to sequences of 200 frames, 
which corresponds to an acquisition time of 4 s. In Figure 3, 
data are shown for selected time points from the reconstructed 
image sequence. The complete reconstructed datasets are shown 
in Supplementary Videos 3–6, with the timeshift between video 
frames being either 50 frames or 0.5 s (though the temporal resolu-
tion is still 4 s in these videos).

We determined the localization precision from the FWHM of a 
linescan that was perpendicular to a talin strand to be as good as 
18 nm. We defined the resolution as the distance at which two talin 
strands could be visually separated, as measured by a linescan. We 
determined the resolution here to be 50 nm (Supplementary Fig. 3).

Movement of the fluorophores will cause an analysis to produce 
an image that is smeared in the direction of the movement. This 
effect limits the resolution that is achievable if structures are moving  

a

b

c

d

Figure 3 | Podosomes, visualized using an mCherry-tagged truncated talin construct, forming and dissociating in a live cell. (a,b) A podosome being 
dissociated. Scale bars, 400 nm. (c) Podosomes being formed. Scale bar, 1 mm. (d) A steady-state podosome. Scale bar, 400 nm. Each reconstructed frame 
used 200 frames (4 s), and frames are spaced 600 frames (12 s) apart. Videos of the podosomes shown in a–d are provided as supplementary Videos 3–6, 
respectively.

a

b

c

Figure 4 | Dissociation and formation of groups of podosomes in a motile cell. (a,b) Dissociation and formation of linked podosomes. (c) Separated 
podosomes joining together. Each reconstructed frame used 200 frames (4 s), and frames are spaced 1,000 frames (20 s) apart. A video containing the 
podosomes shown in a–c as well as the rest of the cell is provided as supplementary Video 7. Scale bars, 800 nm.
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neighbor fluorophores was 112 nm, which is considerably smaller 
than the point spread function FWHM (270 nm), leading to a large 
amount of fluorophore overlap in simulated the frames (Fig. 6g,h).

The simulations showed that the 3B analysis method achieves 
50-nm resolution at an intersection of two strands (Figs. 6i,j). This 
method produced the correct structure but did not pick up every 
fluorophore. We observed artificial thinning and thickening of the 
structures in different areas, but the magnitude of all of these effects 
was less than 20 nm. In all instances, the intensity between close 
spots was somewhat enhanced, making the spots appear more ‘con-
nected’ than they were in the PALM data. This enhanced intensity 
suppressed the resolution along a line of fluorophores compared to 
the resolution perpendicular to a line of fluorophores. We quanti-
fied the resolution perpendicular to lines of fluorophores in all our 
experiments.

discussiOn
The 3B analysis method removes a number of barriers to getting 
the good localization information that can be obtained using other 
approaches. The experiments for 3B analysis are easy to implement: 
live cell experiments use fluorescent proteins, a wide-field micro-
scope and arc lamp illumination, which are all standard in most cell 
biology labs. With this equipment, it is possible to achieve a 50-nm 
resolution with data from only a few seconds of acquisition, and it 
is possible to image for extended time periods. The software that we 
used to perform the analysis here is provided in the Supplementary 

across the podosome, drawing the talin in to a central point until it 
has been removed (Fig. 3b). We also observed podosome forma-
tion in which the strut seemed to have a crucial function, with the 
podosome nucleating from a strut and then expanding on either 
side of it (Fig. 3c). Once the podosome had formed and the strut had 
served its purpose, it appeared to be broken down. Some podosomes 
showed no apparent changes in the wide-field image and were rela-
tively stable at the nanoscale (Fig. 3d).

We also observed more complex structures composed of a 
number of joined podosomes and struts. Imaging of a motile cell 
revealed highly dynamic behavior of these complex structures, with 
podosome structures changing on a timescale of tens of seconds.  
Figure 4 depicts one example of such behavior, where two groups of 
podosomes become joined after each group extends a strut. Where 
the two struts join, a miniature podosome-like structure forms, and 
the two groups of podosomes are pulled closer together. We saw 
similar behavior across the whole cell (Supplementary Video 7).

To determine whether the truncated talin construct that we 
used for our live-cell imaging experiments is representative of the 
structure of the podosome protein ring, we performed two-color 
measurements in fixed cells. We fixed cells expressing the mCherry-
tagged truncated talin construct, and we immunolabeled vinculin 
with Alexa 488–tagged secondary antibody. We used the same 
embedding conditions that we used for the other fixed-cell experi-
ments. The truncated talin construct and the vinculin had similar 
distributions (Fig. 5). The vinculin image was localized slightly 
more to the periphery of the ring, and the talin was more localized 
to the center, whereas the short strands at the edge of the ring were 
more visible in the vinculin. This hints that the localization of dif-
ferent proteins in the ring are subtly different and shows that the 3B 
analysis method can be used to build a map of the spatial organiza-
tion of different podosome components.

simulations
To further validate the Bayesian localization imaging results from 
our 3B analysis method, we analyzed simulated datasets. Bayesian 
fitting methods use wide priors over a large number of parameters 
to fit real-world data, which tend to have narrow, unknown distri-
butions over these parameters. Simulations 
created using the fitting distributions 
may not provide good results, so we cre-
ated simulated datasets by using blinking 
sequences and fluorophore positions from 
the PALM correlative data. We created each 
simulated frame using the fluorophore 
positions from 16 PALM frames (Fig. 6).  
The average separation of two nearest-

Figure 5 | A 3B analysis of fixed-cell data to determine the colocalization 
of vinculin and the truncated talin construct in podosomes. (a) Wide-field 
image of vinculin labeled with Alexa 488. (b,c) The individual 3B analysis 
images shown in glowscale for talin (b) and vinculin (c). (d) Superposition 
of images from the 3B analysis showing the truncated talin construct (in 
cyan) and vinculin 3B data (in magenta). Scale bars, 1 mm.
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Figure 6 | Simulations showing the performance 
of the 3B analysis method. (a–d) Ground truth 
simulated image data (a,b) and 3B analysis 
reconstructions (c,d). (e–h) For the simulations, 
the simulated wide-field image created by 
averaging all frames (e,f) and a typical frame 
(g,h) are shown. Images in a and c correspond 
to the boxed regions in e and g, respectively. 
(i,j) Linescans of the simulations and 3B analysis 
reconstructions show the 3B analysis method 
achieving good reproduction of the structure and 
a resolution of 50 nm. Scale bars, 50 nm (a,c);  
otherwise, 200 nm.
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fixed-cell experiments on podosomes, and T.J.–T. and D.T.B. carried out the 
correlative measurements. E.R. and S.C. carried out the data analysis and wrote 
the manuscript, and all authors revised the manuscript.
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Software; updated versions of the software can be obtained from 
http://3bmicroscopy.com.

The computational effort of our method is linear with respect to 
the number of fluorophores multiplied by the number of pixels. For 
a cell such as that shown in Figure 2, we modeled the data as arising 
from 10,000 fluorophores, and we used 200 sets of MCMC samples 
to build the probability map. 

To analyze a region of around 1.5 × 1.5 mm in size, processing on a 
single core i7 (3.33 GHz) for 6 h is required. Larger areas can be ana-
lyzed, but the time required for these analyses scales with the area of 
the region. To analyze large areas, the analysis is broken down into a 
number of small areas. To analyze large images or video data, a cluster 
computer is required.

Our method has a natural mechanism for trading off temporal 
and spatial resolution: analyzing more frames simultaneously raises 
the spatial resolution but lowers the temporal resolution. Comparing 
our method to SOFI, both methods can deal with images that have 
overlapping fluorophores, but SOFI requires more data and delivers a 
more limited resolution improvement than the 3B analysis. In the 3B 
analysis, it is possible to artificially sharpen structures by including 
models with fewer fluorophores than the data, but in simulations, 
we found these effects to be considerably below the resolution limit.

Rather than revealing an improved resolution picture of an 
apparently smooth process in podosomes, achieving high resolu-
tion revealed an entirely new level of complexity. Podosomes were 
previously thought to smoothly form and dissociate over a period of 
several minutes22. However, our results indicate that podosomes are 
highly dynamic structures. It appears that smaller ring-type struc-
tures down to 230 nm play a crucial part in podosome dynamics. 
Rather than strands simply being parts of partially grown podo-
somes, our results indicate that these structures may have a role in 
seeding new areas of podosomes. In another form, as struts span-
ning across a podosome, they appear to be associated with podo-
some formation and dissociation.

Our use of standard fluorescent proteins opens the techniques 
of high spatial and temporal resolution microscopy to a whole new 
range of samples. Many of these samples, like podosomes, may be 
complex all the way down to the nanoscale.

meThOds
Methods and any associated references are available in the online 
version of the paper at http://www.nature.com/naturemethods/.

Note: Supplementary information is available on the Nature Methods website.
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2.5× Optovar. Illumination was provided by an argon ion laser 
(Innova 90 coherent) emitting at 488 nm. Images were recorded 
using a Cascade II EM-CCD camera (Photometrics) with square 
pixels and a pixel pitch of 16 mm (each recorded pixel corresponds 
to 102 nm in real space). The frame rate varied between 50 and 60 
frames per second.

For the live-cell experiments, a wide-field Olympus IX81 was 
used with an oil immersion objective (100×, NA 1.4; Olympus). 
Illumination was provided by a Sutter Lambda LS xenon arc lamp 
coupled with a liquid light guide, with a Comar GFP-RFP filter set 
(for RFP, excitation was at 537.5–592.5 nm, emission was at 615–
687 nm and dichroic was at 590–700 nm). Images were recorded 
using a Cascade II EM-CCD camera (with the same properties as 
the camera described above). For Figure 3, no post magnification 
was used, meaning each recorded pixel corresponded to 160 nm in 
real space. For Figure 4, a 1.6× post magnification was used, mean-
ing that each recorded pixel corresponded to 100 nm on the sample. 
The drift in these experiments was assessed by monitoring the drift 
of the bead samples over time. The beads were imaged using the 
same frame rate and for the same amount of time as in the live-cell 
experiment. The drift was found to be within the localization error, 
with the mean of the localization position varying by up to 10 nm 
over 5,000 images (acquired over 98 s). We therefore ignored drift 
effects in our analysis, as the expected drift over the 200 images that 
we used to reconstruct an image was expected to be 0.4 nm.

Simulations. Simulations were created using fluorophore posi-
tions from 4,800 out of the 5,000 PALM frames, with each simu-
lated frame created from 16 PALM frames, resulting in 300 simu-
lated frames. The simulated frames were created from two groups 
of PALM frames such that simulated frame 0 consisted of PALM 
frames 0–7 and 2,400–2,407, simulated frame 1 consisted of PALM 
frames 8–15 and 2,408–2,415 and so on. This method prevented 
later frames from becoming unrealistically sparse. The FWHM of 
the simulated point spread function was set to 1.56 pixels, which 
corresponds to a FWHM of 270 nm at 86 nm per pixel (this halved 
the number of nm per pixel compared to the original PALM data-
set, but because the positions of the fluorophores were set relative 
to pixels, it also decreased the distance between fluorophores by a 
factor of 2). This created datasets with overlapping fluorophores. 
Simulated images were created using Gaussian-shaped spots of aver-
age brightness 1,200 photons on a background of average brightness 
600 photons with Poisson noise. The photon counts and, therefore, 
the signal-to-noise ratio was set using photon counts from the back-
ground and isolated fluorophores in the fixed-cell dataset.

Analysis. The image series was modeled using a factorial hidden 
Markov model23 as arising from a number of fluorophores. Each flu-
orophore was modeled using a Markov model that had three possible 
states: emitting (light), non-emitting and bleached. The fluorophore 
can transfer between the emitting and non-emitting states and can 
also transfer from the non-emitting to the bleached state. Once in 
the bleached state, the fluorophore cannot leave it. The state transi-
tion diagram for fluorophores is shown in Supplementary Figure 4. 
From our estimates of the lifetimes and transition probabilities asso-
ciated with the energy levels14,27 and the frame time of around 0.02 s, 
we calculated estimates for all the model probabilities in a given 
frame. We obtained values of P1 = 0.16, P2 = 0.84, P3 = P4 = 0.495 
and P5 = 0.01 (see Supplementary Fig. 4 and Supplementary Note  

Online meThOds
Sample preparation for correlative measurements. B16-F1 cells 
were seeded on coverslips coated with 25 mg ml–1 laminin as pre-
viously described26. Cells were then co-transfected with PA-GFP–
tubulin and mCherry-tubulin with FuGENE 6 (Roche) following the 
manufacturer’s recommendations. Cells were fixed with 4% para-
formaldehyde, 0.2% glutaraldehyde (Electron Microscopy Sciences) 
in PBS (pH 7.4) for 35 min at room temperature (18–25 ˚C).  
Streaming time-lapse images were acquired with an Olympus 
IX71 total internal reflection fluorescence microscope using a 60×, 
1.45-numerical-aperture (NA) objective (Olympus), and fluores-
cence emission was detected with an electron-multiplying charge-
coupled device (EM-CCD) camera (Andor Technology, DV887ECS-
BV). PA-GFP constructs were imaged with 100 ms integration times 
(488-nm laser power was 400–800 mW going into the microscope). 
mCherry constructs were imaged with 50-ms integration times  
(561 nm laser power was 1 mW going into the microscope). PALM 
datasets comprised 5,000 frames, 3B datasets comprised 1,000 
frames, and both datasets were corrected for drift. For the PALM 
data, single molecules were fitted with theoretical Gaussians, and 
PALM images were reconstructed as previously described5.

Sample preparation for podosome observations. The THP1 cell 
line, which can be stimulated to differentiate into macrophages, was 
used to observe podosomes. Podosome formation was induced in 
these cells by seeding them on fibronectin-coated cover glasses in 
the presence of the cytokine TGF-b1 (1 ng ml–1). Vinculin stain-
ing was conducted using VN-1 vinculin mouse monoclonal anti-
body (Sigma) conjugated to Alexa 488 mouse secondary antibody. 
Coverslips were mounted in PBS (pH 7.4) containing 100 mM 
2-mercaptoethanol to induce blinking at a suitable rate14.

Lentiviral-mediated gene transduction of THP1 cells. PCR was 
used to amplify cDNA encoding residues 1,975–2,541 of human 
talin from a template plasmid. The resulting sequence was cloned 
using the Zero Blunt vector (Invitrogen) into the multiple clon-
ing site of the pLNT/Sffv-mCherry-MCS vector generating the 
mCherry-talin (1,975–2,541) lentiviral expression construct. VSV-G 
pseudotyped lentivirus encoding mCherry-talin (1,975–2,541) was 
packaged in 293T cells by transient transfection of the cells with the 
pD8.91 and pMD.G accessory plasmids along with the pLNT/Sffv 
transfer vector encoding the talin construct. Supernatants contain-
ing lentivirus were harvested 48 h after transfection, filtered through 
a 0.45-mm-pore-size filter and stored at –80 °C. THP1 cells were 
transduced with lentivirus by incubation with lentiviral superna-
tants for 24 h, then washed using sequential centrifugation and 
resuspension steps and left for an additional 3 d to express the fusion 
protein. Twenty-four hours before the live-cell imaging experiments, 
THP1 cells were seeded at a density of 2.5 × 106 cells per ml on 
fibronectin-coated (10 mg ml–1) glass coverslips in the presence of 
1 ng ml–1 TGF-b to induce cell attachment and podosome forma-
tion. For all imaging experiments, coverslips with adherent cells 
were mounted onto purpose-built glass viewing chambers. For the 
two-color experiments, cells containing the truncated mCherry-
talin construct were fixed and stained as described previously.

Microscopy for the podosome experiments. For the fixed-cell 
experiments, a wide-field Zeiss Axiovert 200M microscope was 
used with an oil immersion objective (63×, NA 1.4; Zeiss) and a  

©
 2

01
1 

N
at

u
re

 A
m

er
ic

a,
 In

c.
  A

ll 
ri

g
h

ts
 r

es
er

ve
d

.



 naTure meThOds doi.10.1038/nmeth.1812

arTicles

We calculated the relative probability that a fluorophore was 
present compared to the null hypothesis that the data arose from 
noise. The model evidence for each hypothesis can be calculated 
by integrating out over state sequences (the blinking and bleaching 
state in each frame) using the forward algorithm24 and by inte-
grating out over continuous variables using Laplace’s approxima-
tion28. However, the forward algorithm calculation is exponential 
in the number of fluorophores. An alternative approach is to take 
a statistical sample of state sequences, but this method does not 
provide sufficiently accurate results. We therefore used a hybrid of 
the forward algorithm and a state-sampling technique. A detailed 
description of the algorithm is given in the Supplementary Note.

The algorithm is then run on user-selected areas. The user must 
specify the pixel size (which is used to calculate the predicted point 
spread function size) and the starting number of fluorophores in 
the area. The final result of the algorithm is a density map of the 
positions of fluorophores yielded. Further details on the parameters 
and reconstruction algorithm are given in the Supplementary Note.

26. Burnette, D.T. et al. A role for actin arcs in the leading-edge advance of 
migrating cells. Nat. Cell Biol. 13, 371–382 (2011).

27. Xie, X.S. Optical studies of single molecules at room temperature. Annu. Rev. 
Phys. Chem. 49, 441–480 (1998).

28. MacKay, D.J.C. Information Theory, Inference, and Learning Algorithms 
(Cambridge Univ. Press, 2003).

for definitions and discussion of these probabilities). To calculate 
these values, the typical values of the lifetimes and various transition 
probabilities were taken. The on-state lifetime was taken to be 10–7 s,  
and a fluorophore was taken to be 105 times more likely to remain 
in the on state than to transition to the off state. The frame rate of 
the camera was taken to be between 50 and 60 Hz (each frame takes  
18 ms). So each frame is 18,000 on-state lifetimes, in each of which 
the fluorophore had a probability of 0.99999 of returning to the on 
state. The values of P3 and P4 were taken with a variety of typical 
off-state lifetimes (10–3–10–2 s) assuming a monoexponential decay. 
This led to values of P4 between 0.1 and 0.8. The value of 0.495 was 
chosen as being reasonably central to this spread, given the large 
uncertainties in the input values.

The same state transition probabilities were used for fitting both 
fixed-cell and live-cell datasets, as only a broadly correct prior is 
needed for this type of modeling. The structure observed in the 
reconstructed image did not vary to an extent that it altered the 
observed structure if the state transition probabilities were varied 
within physically realistic values. We assume that neighboring 
fluorophore states are statistically completely independent. Our 
results are only weakly dependent on the priors. Without blinking 
or bleaching, this method would have the same limits as decon-
volution. To enhance the blinking, a switching probe with better 
dynamics could be used.
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Supplementary Figure 1 : The two graphs show a time-scan, each in a region with an isolate fluorophore,
through a single pixel of the dataset used in Figure 2c–g. Single frame images of the corresponding fluorophore are
shown next to each graph. Only the last 200 frames of the 500 frame dataset (which were usually discarded) were
used in order to isolate individual fluorophores. The upper graph shows a dim, slowly blinking fluorophore with three
appearances. The fluorophore is localised to a standard deviation of 31 nm using 19 frames (thresholded about 6200).
The lower graph shows a bright fluorophore with two brief appearances. The fluorophore is localised to a standard
deviation of 9.5 nm using 6 frames (thresholded above 6400).
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Supplementary Figure 2 : We have compared the distribution of binding angles at junctions between vinculin
strands in images obtained using our 3B analysis technique to the angles found using STED. The STED data has been
taken from (M. Walde, J.M., G.E.J., R.H., S.C., Unpublished data), which also describes the method used to measure
the angles. From the STED data, 1,780 angles were measured and from the localization data, 338 were measured.
As can be seen, the results from the two microscopy techniques are in agreement, but the higher resolution of our
technique produces a sharper peak in the angle distribution.
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Supplementary Figure 3 : Linescans showing resolution of 3B imaging in live cell samples. (a), (b) two images
of a podosome 20 seconds apart (see Figure 3a) with (c), (d) linescans. (e), (f) two podosomes (see Figure 4) with
linescans (g), (h). Structures around 50nm apart can be seen in linescans (c), (g) and (h). Scalebars are 200 nm.
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Supplementary Figure 4 : State transition diagram for our model of a fluorophore.
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Supplementary Note 1 : Detailed description of method.

Modelling the image

Emitting fluorophores are modeled as producing a Gaus-
sian shaped spot in the image. This spot has four con-
tinuous variables: the position (x,y), the radius, and the
brightness (integrated intensity). We assume that fluo-
rophores can occur anywhere in the region being analyzed
with equal probability. Size and brightness are taken to
be independent and prior distribution over the variables
is set to log-normal, as this is a convenient distribution
which prevents negative values. We normalize images by
high-pass filtering with large Gaussian kernel to remove
the background offset followed by scaling the image to set
the standard deviation of intensity to one. This is possi-
ble because the images that we have analysed have very
large areas containing only large amounts of out of focus
light, which means that there are only small errors in the
estimate of the noise variance. If the image is mostly
foreground, then the noise variance can be estimated us-
ing manually selected background regions (which include
the still present out-of-focus fluorescence). The prior on
brightness is applied relative to the normalized image.
Image noise is modeled as Gaussian with zero mean and
the standard deviation (σ) of 1, since the background
level is high.

Inference

Below, we use the convention common in the Bayesian
machine learning literature that P (·) denotes both con-
tinuous and discrete probability distributions and the

∫

symbol is used in both the discrete and continuous case.
A complete list of symbols is given at the end of this note.

Consider the case of deciding to place a fluorophore,
F , versus keeping the null hypothesis that no fluorophore
is present, N , given the data, D. We would like to deter-

mine the relative probabilities P (F|D)
P (N|D) and using Bayes’

rule we obtain the Bayesian model comparison equation:
P (F|D)
P (N|D) = P (D|F)P (F)

P (D|N )P (N ) . Since P (F) and P (N ) are con-

stants, we need to calculate P (D|F) and P (D|N ). The
latter is trivial as it is just the probability of observing all
pixels given the noise model. The former is computed by
evaluating the model evidence which is computed using
the marginalization:

P (D|F) =

∫

a∈R4

∫

b∈Z
N

3

P (D, a, b|F) db da, (1)

where a are the four continuous parameters, b is the flu-
orophore state in each frame, and N is the number of
frames. For a single fluorophore, the integration over b
can be performed with the forward algorithm24. We per-
form the integral over the continuous parameters using
using Laplace’s Approximation28 which involves finding
aMP, which is the MAP (maximum a posteriori) estimate

of a. We also require the MAP probability, P (D, aMP|F),
and the Hessian, ∇∇ log P (D, a|F)|aMP

, We find aMP us-

ing nonlinear conjugate gradient29.
We need to compare models with different numbers of

fluorophores. For a model with M fluorophores, FM ,
a now has 4M continuous parameters: four per fluo-
rophore. Also, b = {b1, · · · , bM}, where bi ∈ Z

N
3 is the

state sequence for the ith fluorophore. Equation 1 be-
comes

P (D|FM ) =
∫

a∈R4M

∫

b∈Z
MN

3

P (D, a, b|FM ) db da,

Exact integration over state sequences rapidly becomes
intractable with increasing M so we perform integration
using MCMC (Markov Chain Monte Carlo) sampling.
The discrete states are sampled using Gibbs sampling30

since we can sample from Markov chains efficiently using
forward filtering backwards sampling31. For convenience,
we now make the definitions P (D, a, b|FM ) = P ∗(a, b) =
eE(a,b), where E is the log probability. Also, we define
Z = P (D|FM ) =

∫ ∫

P ∗(a, b) da db, Za =
∫

P ∗(a, b) db

and P∗(a,b)
Z = P (a, b).

We use Laplace’s approximation to integrate over a.
Recall that one requirement is computation of ZaMP

which requires optimization over a to find aMP. The
latter is computed using the MCMC technique of slow
growth thermodynamic integration32,33 because while it
is hard to compute ZaMP

directly it is easier to compute
the integral of the derivative of the log with respect to
some parameter. The noise standard deviation, σ is the
most convenient parameter so instead of keeping it fixed
to 1, we treat it as a parameter and compute:

log Za(1) = log Za(σmax) −
∫ σmax

1

d

dσ
log Za(σ) dσ. (2)

For sufficiently large values of σmax (e.g. 1010), the HMM
states become effectively independent of the data and
so log Za(σmax) = −NKlog

√
2πσmax

2, where K is the
number of pixels.

As discussed before, finding a∗ requires optimization
over a to find the MAP fluorophore positions. For one
fluorophore, we use conjugate gradient to optimize over
a. However, since the sampling introduces noise in esti-
mating Za, it it not possible to know if a true maximum
or an artifact of noise has been found. Therefore we have
developed a hybrid of the forward algorithm and MCMC
to compute derivatives of Za very precisely. By yield-
ing accurate estimates of the derivatives, we can avoid
resampling during each loop of the optimization, which
makes the process vastly more efficient and prevents the
optimization from getting stuck on an artifact of noise.

Nature Methods: doi:10.1038/nmeth.1812
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Since our method only yields accurate gradients, we
adapt the conjugate gradient algorithm. While searching
along the conjugate direction, instead of searching for a
local maximum of Za, we search until the dot product of
the first derivative and the search direction changes sign,
and then identify the zero crossing. We take small steps
to avoid jumping over the local maximum.

Our hybrid method works as follows. Derivatives of
logarithms can be readily found using S samples drawn
using MCMC32 (where b̃ is an instance of a sample of b):

d

da
log Za =

∫

dE(a, b)

da
P (a, b) db ≈ P (a)

S

∑

b̃∼P (b|a)

dE(a, b̃)

da
.

(3)

When finding the expectation of an arbitrary func-
tion φ over an arbitrary distribution P (x) (with x =
{x1, · · · , xn} in the arbitrary space x ∈ X , xi ∈ Xi) us-
ing MCMC, the integration over different variables can
be separated:

∫

X

φ(x)P (x) dx =

∫

Xn×···×X2

[
∫

X1

φ(x)P (x1|x2 · · · , xn) dx1

]

P (x2, · · · , xn) d(x2, · · · , xn). (4)

Since drawing samples from the joint draws samples from the marginal, this can be approximated easily using MCMC:

≈ 1

S

∑

(x̃2,··· ,x̃n)∼P (x2,··· ,xn)

[
∫

X1

φ(x1, x̃2, · · · , x̃n)P (x1|x̃2, · · · , x̃n) dx1

]

. (5)

Substituting the derivative of log Za from Equation 3 into equation 5 gives:

d

da
log Za =

∫

Z
MN

3

dE(a, b)

da
P (a, b) db

≈ P (a)

S

∑

(b̃2,··· ,b̃M )∼P (b2,··· ,bM |a)

[

∫

Z
N

3

dE(b1, b̃2, · · · , b̃M , a)

da
P (b1|b̃2, · · · , b̃M , a) db1

]

.

(6)

In a manner similar to Equation 3, the inner integral in
Equation 6 can be written as:

d

da
log

∫

b∈Z
N

3

P ∗(b1|b̃2, · · · , b̃M , a) db1. (7)

This equation is the marginalization equation for a sin-
gle fluorophore, conditioned on a sample of all other flu-
orophore states and it can therefore be efficiently com-
puted with the forward algorithm. We can therefore com-
pute gradients with respect to the parameters of a spot
by marginalizing over the spot’s states with the forward
algorithm and the remaining spot states with MCMC.

Using this hybrid of MCMC and the forward algo-
rithm, we get smooth, accurate differentials because we
do not recompute the samples during the hill climbing
stage. This allows for very efficient optimization of the
real-valued fluorophore parameters and is crucial to the
success of our method.

Algorithm

Even with these improvements, it is too computationally
expensive to compare large models with Bayesian model
comparison. In practice, we make many local decisions
which incrementally modify the model, one fluorophore
at a time. We take one fluorophore under consideration
to be either added or removed. We either select a fluo-
rophore for removal, or add a new fluorophore at a ran-
dom position. We now have two models: one with that
fluorophore and one without. For the purposes of model
selection and marginalization, we allow only the param-
eters of that one spot to vary, and then decide which
model to keep. After a number of such decisions have
been made, we re-optimize the entire model, then repeat
the model selection process. This yields the algorithm:

Nature Methods: doi:10.1038/nmeth.1812
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1. Select initial spot positions for a model.

2. Optimize model using hybrid MCMC and adapted
conjugate gradient. The step size is limited so that
L∞ of the step is 0.5. One pass of optimization
optimizes each fluorophore in turn with the order-
ing of fluorophores taken in the four compass di-
rections. We repeat this for 4 passes (one for each
compass direction), using 10 samples.

3. Repeat 20 times:

(a) Compute free energy (Za) of the model assum-
ing fluorophores are fixed using 1000 iterations
of thermodynamic iterations where the noise
standard deviation for iteration i is 1.25i/10.

(b) Either add a new fluorophore or select one at
random.

(c) Optimize the new/selected spot using the hy-
brid method with 20 samples.

(d) Compute Za of the new model using thermo-
dynamic integration.

(e) Compute free energy by computing the Hes-
sian using 100 outer samples, and 1000 inner
samples.

4. Goto 2

Note that when computing the Hessian with respect to
the parameters of a single spot, we do not have an equiva-
lent to the hybrid algorithm, so we use a nested iteration
scheme. During the nested scheme, for each sample of
all states we draw (outer sample), we draw a number of
samples (inner samples) from the Markov chain of inter-
est using forward filtering, backwards sampling. Since
that algorithm is so efficient, this allows us to get con-
siderably more accuracy with little extra computational
cost.

Note that in general, estimating a suitable point for
terminating an MCMC procedure is difficult32. In prac-
tice, the algorithm is run until significant changes in the
reconstructed image can no longer be observed. This
typically requires several hundred complete iterations.

Reconstruction

The method for generating a final image from the MAP
estimates is very similar to a discrete approximation to
kernel density estimation. The first stage is to build up
an image containing the fluorophore density. An empty
image is initially created which is generally a much higher
resolution than the input data.

All MAP positions are then quantized to the nearest
pixel in the high resolution density image. The resulting
quantized locations are then accumulated into the image.
In order to retain an approximation of the brightness, the
accumulated fluorophores are weighted with the MAP
brightness.

The resulting high resolution image is then blurred
with a Gaussian kernel with a standard deviation of not
less than σ = 2 pixels, then subsampled by a factor of
two to give the density image. The density image is then
given a false colormap, to create the final colormapped
image. The density image intensity is then scaled by an
arbitrary amount and a glow color scheme is then applied
using the following formula:

r = min 1, 3d

g = min 1, (max 0, 3d − 1)

b = min 1, (max 0, 3d − 2) ,

where d is a pixel intensity in the scaled density im-
age, and r, g and b are the corresponding reg, green and
blue pixel intensities in the final colormapped image. All
the 3B images shown in the paper are generated using
this method, except for Figure 2a, which shows a single
MCMC sample.
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Table of symbols
Symbol Meaning
N Number of frames in an image sequence.
M Number of fluorophores.
S Number of samples.
Z3 Integers modulo 3, i.e. Z3 ≡ {0, 1, 2}. This is generally used to indicate that a

variable is in one of the three states, emitting (light), not emitting and bleached.
Z

N
3 An N dimensional quantity, each element of which is in Z3. A variable in Z

N
3 is

generally the states of a single fluorophore in all frames.
Z

MN
3 An MN dimensional quantity in Z3. A variable in this space contains the state of

every fluorophore in every frame.
b A variable containing the state of every fluorophore in every frame.
R

4 Real numbers in 4 dimensions.
a A variable containing the four continuous parameters of every fluorophore: x and

y position, brightness and size.
N Model class for the null hypothesis (data is generated by noise).
F Model class indicating that the data is generated by one fluorophore and noise.
FM Model class indicating that the data is generated by M fluorophores and noise.
σ Noise standard deviation, usually set to 1.
P (D, a, b|FM ) Probability that the data is generated by a M fluorophores with specific parameters

and a specific state sequence, multiplied by priors over b and a.
P ∗(a, b) Shorthand for above.
P (D|FM ) Probability that data is generated by M fluorophores. Equal to

∫ ∫

P ∗(a, b) dadb
Z Shorthand for above. Note that

∫ ∫

P ∗(a, b)/Z dadb = 1.
P (a, b) Normalized distribution P ∗(a, b)/Z.

b̃ A sample of b drawn from the distribution P (b|a).
P (a) Prior probability of a. Equivalent to P (a|FM ).
E(a, b) Log probability such that P ∗(a, b) = eE(a,b).
P (b0) Prior probability of the fluorophore state in the first frame. Equivalent to P (b|FM ).

This is set to give a 50/50 chance of being in states 0 or 1.
a0 Initial spot parameters.
P (D, a|FM ) Probability that the data is generated by a M fluorophores with specific parame-

ters, but with the state sequence marginalized out.
Za Shorthand for above.
Za(·) Za parameterized with the noise standard deviation. Since σ is usually 1, the

parameterization is usually omitted.
aMP The value of a which maximizes Za.
X An arbitrary space.
x An arbitrary variable in X .
φ An arbitrary function of x.
P1 · · ·P6 Transition matrix probabilities.
Parameter values and adjustments:
P1 · · ·P6 Discussed in the main text.
P (a) All elements of P (a) are independent. The position prior is set to be uniform over

the area under analysis and zero outside. The size prior is set to be a log-normal
distribution with σ = 0.1 and µ set so that the mode is at the correct FWHM
of the PSF for the microscope. The brightness prior is log-normal with values
around σ = 3 µ = 1. These parameters need to be tuned to the data based on the
approximate brightness of the fluorophores.

a0 The initial values of the brightness and size are set to the modal values of the prior.
The initial number of spots needs to be selected by the user. The initial positions
are approximately uniform over the area of interest.

The parts of P (a) which relate to the pixel resolution and relative brightness may need to be adjusted for different
samples. The part of P (a) and a0 relating to the area of analysis will need to be altered between different runs of the
algorithm.
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