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Abstract
We propose that the extraordinarily high superconducting transition temperatures in the
cuprates are driven by an exact mapping of the dx2−y2 Cooper-pair wavefunction onto the
incommensurate spin fluctuations observed in neutron-scattering experiments. This is
manifested in the direct correspondence between the inverse of the incommensurability factor δ
seen in inelastic neutron-scattering experiments and the measured superconducting coherence
length ξ0. Strikingly, the relationship between ξ0 and δ is valid for both La2−xSrx CuO4 and
YBa2Cu3O7−x , suggesting a common mechanism for superconductivity across the entire
hole-doped cuprate family. Using data from recent quantum-oscillation experiments in the
cuprates, we propose that the fluctuations responsible for superconductivity are driven by a
Fermi-surface instability. On the basis of these findings, one can specify the optimal
characteristics of a solid that will exhibit ‘high Tc’ superconductivity.

(Some figures in this article are in colour only in the electronic version)

Although there is strong experimental evidence that the ‘high-
Tc’ cuprates possess a superconducting order parameter with
dx2−y2 symmetry [1], the mechanism for superconductivity
remains a matter for debate [2]. In this paper, we point out that
the experimentally-determined Cooper-pair wavefunction in
the cuprates maps directly onto the spin-fluctuation distribution
responsible for the antiferromagnetic peaks measured in
inelastic neutron scattering [2–7]. This strongly suggests that
the superconductivity in the cuprates is mediated by the spin
fluctuations. In this context, it should be noted that the
fluctuations (figure 1(a)) have characteristic maximum energies
∼500 K [2–7], a plausible energy scale for the values of
Tc � 100 K observed in the cuprates [2].

Recent measurements of magnetic quantum oscillations
in the underdoped cuprates [8–12] suggest the likely cause of
the fluctuations. These experiments reveal a number (1–3) of

small Fermi-surface pockets (quantum-oscillation frequencies
�2000 T), likely to result from the incommensurate nesting
of the predicted (large) hole Fermi surface [11–14]. The
nesting vectors inferred from the topology of the small
Fermi pockets [11] are consistent with the wavevectors of
the spin fluctuations determined in the neutron-scattering
measurements [2–7]. This strongly suggests that the
fluctuations are driven by Fermi-surface instabilities [11], and
that the development of their dispersion with increasing hole
doping p [2–7] reflects the evolution of the underlying Fermi-
surface topology.

We begin by considering the dx2−y2 Cooper-pair wave-
function. Most treatments of superconductivity consider the
state as a condensate [15–19]; in such a picture, it is natural
to treat the Cooper-pair wavefunction in k-space. However,
we are interested in the similarity of the spatial distribution of
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Figure 1. (a) Energy (E) versus qx for several YBa2Cu3O7−x compositions (points) [5, 6], with fits to equation (2) to obtain extrapolated
values of δ at E = 2 meV (curves). (b) Contour plot of d-wave Cooper-pair wavefunction in two-dimensions (equation (1)); we assume a
Fermi wavevector kF = π/

√
2a where a is the lattice parameter, while p = 0.1, for which we select ξ0 = 27 Å from table 1.

(c), (e) Simulation of the incommensurate neutron-scattering peaks obtained by Fourier transforming equation (3); δ and ξ correspond to
p = 0.1 (table 1). (d), (f) Real-space spin-fluctuation map corresponding to the set of four incommensurate peaks in (b), also for p = 0.1
(see table 1). The middle row ((c), (d)) corresponds to the lower bound of correlation length, the bottom row ((e), (f)) the upper bound
(table 1). We consider the simple case where sQ is the same for all Q.

spin fluctuations and the Cooper pairs, and so we consider the
form of the two-dimensional dx2−y2 Cooper-pair wavefunction
in real space [1, 19]:

ψ(r) ∝ cos(rkF)(x
2 − y2)e−3r/ξ0 . (1)

Here r = √
x2 + y2 is the cylindrical polar radius, x and

y are corresponding Cartesian coordinates, kF is the Fermi
wavevector [8, 9] and ξ0 is the superconducting coherence
length. Figure 1(b) shows a contour plot of ψ(r); the known
diagonal nodal regions [1, 18] are clearly visible. In such
a plot, the lengthscale over which ψ(r) is non-negligible is

defined by ξ0 (equation (1)); coherence lengths ξ0 derived from
magnetoresistance and other data [21, 22] are given in table 1
for several cuprates with different composition and hole doping
p. As we will later compare these data to inelastic neutron-
scattering results, some interpolation has been used to obtain
values for the same p and composition as the samples used in
the neutron experiments.

We now consider the similarity of the dx2−y2 Cooper-
pair wavefunction (figure 1(b), equation (1)) to the real-space
topology of the incommensurate antiferromagnetic fluctuations
seen in inelastic neutron scattering [2–7]. Low-energy

2



J. Phys.: Condens. Matter 21 (2009) 012201 Fast Track Communication

Table 1. Parameters for various cuprate superconductors, including
hole doping p. For La2−x Srx CuO4, δ values measured at neutron
transfer energies of E ≈ 2–3 meV are taken from [4, 7]. For
YBa2Cu3O7−x , δ values at the equivalent energy are taken from plots
such as figure 2(a) using data from [5, 6]. Correlation lengths ξ are
taken from [3, 4] while BCS coherence lengths ξ0 are taken
from [21, 22], occasionally requiring interpolation between adjacent
compositions for precise doping matches to δ. For compounds in
which more than one estimate of ξ has been reported, the range of
values obtained is given.

Compound p δ ξ (Å) ξ0 (Å) Tc (K)

La1.94Sr0.06CuO4 0.06 0.05 17 56 13
La1.925Sr0.075CuO4 0.075 0.07 14 44 33
La1.92Sr0.08CuO4 0.08 0.08 11 36 24
YBa2Cu3O6.5 0.082 0.078 9 33 59
YBa2Cu3O6.6 0.097 0.16 7.5 22 62.7
La1.9Sr0.1CuO4 0.10 0.10 12–33 27 29
YBa2Cu3O6.8 0.123 0.18 4 24 71.5
La1.88Sr0.12CuO4 0.12 0.115 17 25 33.5
La1.86Sr0.14CuO4 0.14 0.1225 12 22 35
La1.85Sr0.15CuO4 0.15 0.1225 14–50 20 38
YBa2Cu3O6.95 0.152 0.24 3.3 12 93
La1.82Sr0.18CuO4 0.18 0.13 9–40 19 35.5
La1.75Sr0.25CuO4 0.25 0.125 8 28 15
La1.73Sr0.27CuO4 0.27 0.1 10 34 7

inelastic neutron-scattering data for both La2−x Srx CuO4 [4, 7]
and YBa2Cu3O7−x [5, 6] follow an approximately inverted
parabolic form

E(q) = E0

(
1 − a2(q − Q0)

2

π2δ2

)
, (2)

where a is the in-plane lattice parameter and E0 is a doping-
dependent energy scale [2–6]; some examples are shown
in figure 1(a). Here, δ depends on the composition and
hole doping p of the cuprate involved [2, 3, 20]; some
values are given in table 1. As E → 0, the brightest
scattering intensity typically appears at a cluster of four
incommensurate peaks at Q = (±π/a,±(1 ± 2δ)π/a) and
(±(1 ± 2δ)π/a,±π/a) [2–7]; a simulation is shown in the
positive qx , positive qy quadrant of two-dimensional k-space
in figure 1(c). The form of the scattering peaks in figures 1(c)
and 1(e) is already very suggestive of the dx2−y2 wavefunction
in figure 1(b); to make a quantitative comparison, however, we
require a real-space representation of the corresponding spin
fluctuations.

A simple model of spin fluctuations that can produce
the observed incommensurate scattering peaks is a sinusoidal
variation of the staggered moment modulated by an
exponential damping factor; the latter term represents the
fact that the antiferromagnetic fluctuations possess a finite
correlation length ξ [3, 20]. The spatially-varying moment is
thus

s(r, t) =
∑

Q

sQ exp

(
− r

ξ
+ iωt

)
cos(Q · (r − r0)), (3)

where ω is the angular frequency of the fluctuations, r0 =
(±d, 0) or (0,±d) with d = a/2δ, and the sum in Q runs
over the values given above. Whilst the experimental values of

d are well constrained by the positions of scattering peaks in
the neutron data, the extraction of ξ is more dependent on the
method used to fit the scattering lineshape; hence, quite a wide
spread of ξ values is given in the literature (see e.g. [3, 4]).
In what follows, we shall use both the lowest and the highest
reported values of ξ in our simulations to show that the main
conclusion of this paper is unaffected by the choice of ξ ; it
is the lengthscale d , rather than ξ , that is more important in
determining the form of the spatial distribution of the spin
fluctuations.

Figures 1(c) and (e) show Fourier transforms of
equation (3) for the lowest and highest reported values of
ξ . These simulations reproduce the general form of the
experimental neutron data [2–7] very well. Note that the choice
of r0 is quite critical; any other value would give significant
intensity at q = Q0, at variance with the experimental spectra.
This is an important point, to which we will return.

Figures 1(d) and (f) show time-averaged contour plots of
equation (3), again for the lowest and highest reported values
of ξ . The similarity between the spin-fluctuation distributions
and the dx2−y2 wavefunction (figure 1(b)) is most marked: both
show similar angular and radial distributions. Less obvious,
but equally germane, is the phase of each function plotted. The
choice of r0 necessary to reproduce the neutron data means
that there is a π difference of phase between adjacent lobes
of the spin-fluctuation distribution, exactly the same as the
π difference in phase between adjacent lobes of the dx2−y2

Cooper-pair wavefunction [1, 18].
Finally, we remark that d plays a very similar role in the

spin-fluctuation spatial distribution to that of ξ0 in the Cooper-
pair wavefunction; via the oscillatory term in equation (3),
d determines the lengthscales over which the spin-fluctuation
magnitude is largest and over which it first falls to zero. By
contrast, quite large variations in ξ are relatively unimportant;
the positions of the maxima and minima in s(r, t) are little
affected (compare figures 1(d) and (f)). In subsequent
simulations we therefore use the mean ξ in cases where there
is a spread in values.

Values of d = a/2δ may be deduced using the δ

taken from inelastic neutron-scattering measurements shown
in table 1. In the La2−xCax CuO4 cuprates, the dispersion
relationships (figure 1(b)) have been measured down to low
energies, providing accurate values of δ [4]. However, there is
a loss of intensity at lower-energy transfers in YBa2Cu3O7−x ,
possibly because of their greater homogeneity [5, 6],
necessitating a downward extrapolation of the dispersion
curves to obtain δ in the limit E → 0.

Having tabulated experimental values of δ and ξ0 for
various hole densities p (table 1), we can now plot the
evolution with increasing p of the spatial distribution of the
spin fluctuations (equation (3)) alongside the corresponding
Cooper-pair wavefunction (equation (1)); figure 2 shows the
result. At small values of p, the incommensurate neutron-
scattering peaks occupy a small area of k-space [4–6]; the
corresponding real-space spin-fluctuation distribution occupies
a large area, as does the Cooper-pair wavefunction. As
p increases, the incommensurate peaks spread out in k-
space [4–6]; hence, the spin-fluctuation spatial distribution is
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Figure 2. Comparisons of the spin-density amplitude and dx2−y2 wavefunction at selected values of p. The first column shows plots of the
incommensurate diffraction peaks obtained on re-Fourier transforming s(r) calculated using equation (3) and the published values of δ and ξ
listed in table 1. The second column shows the calculated |s(r)| while the third column shows ρc(r) = |�(r)|2 calculated according to the
values of ξ0 listed in table 1. Rows 1, 2 and 3 consecutively correspond to p ≈ 0.06, 0.1 and 0.152. Note that where a range of ξ values are
listed in table 1 the average is used.

compressed, as is the Cooper-pair wavefunction. Although
the tabulated values of ξ0 and δ (table 1) are deduced
from completely independent experiments (the former from
thermodynamic or transport data, the latter from neutron
scattering), there is a very close match between the physical
size of the dx2−y2 Cooper-pair wavefunction and the spatial
extent of the spin-fluctuation distribution.

The very similar spatial extent of the Cooper-pair
wavefunction and the spin fluctuations strongly suggests a
causal relationship between the two phenomena. Examination
of equations (1) and (3) shows that the spin-fluctuation
amplitude is largest at the vector locations (±d, 0) and
(0,±d), whilst the dx2−y2 Cooper-pair wavefunction has
greatest probability amplitude at (± 2

3ξ0, 0) and (0,± 2
3ξ0).

Therefore, if the spin fluctuations are responsible for the
superconducting pairing, one would expect that

2ξ0 = 3d, (4)

independent of hole doping p. Figure 3(a), which plots exper-
imental values of ξ0 against d (from table 1), shows that this is
in fact the case for both La2−x Srx CuO4 and YBa2Cu3O7−x .
Irrespective of doping and composition, the data for all
materials lie close to the single straight line 2ξ0 = 3d
(equation (4)). This suggests that the same causal connection
between the spin fluctuations and superconductivity holds for
all of the cuprates.

Before turning to the origin of the incommensurate
scattering peaks in the neutron data [2–7, 11], it is worth
re-iterating the factors that lead us to propose a causal
relationship (or one might say spatial resonance) between
superconductivity and antiferromagnetic fluctuations in the
cuprates.

(i) On setting r0 = (±d, 0) or (0,±d) where d = a/2δ,
the π difference in phase between the adjacent ‘spin
clusters’ in figure 1(d) is aligned with the π difference in
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Figure 3. (a) The approximately linear correspondence between d = a/2δ and ξ0 for La2−x Srx CuO4 (circles) and YBa2Cu3O7−x (squares).
The line represents the ratio 2ξ0 = 3d (equation (4)). (b) Plot showing δ and ξ−1

0 in La2−x Srx CuO4 exhibiting a maximum versus p in a
similar fashion to Tc (scaled for comparison), though Tc falls more rapidly with p beyond optimal doping.

phase between adjacent lobes of the dx2−y2 Cooper-pair
wavefunction (figure 1(b)). The spin fluctuations are
therefore ‘in phase’ with the Cooper-pair wavefunction.

(ii) Independent of our choice of wavefunction, there is a very
direct correspondence between ξ0, which determines the
overall size of the Cooper pair, and δ, which quantifies the
physical separation d = a/2δ between adjacent clusters
of spins in real space (figures 2 and 3). As mentioned
above, this results in the 2ξ0 = 3d slope (equation (4)) in
figure 3(a).

While there are certainly systematic and random errors
in the methods used to extract ξ0 values [21, 22], they are
consistent in La2−x Srx CuO4 with estimates obtained from
strong-coupling variants of the BCS formulae ξ0 = h̄vF/π�0

and 2�0/kBTc ≈ 4–5, where �0 is the T = 0 order
parameter [16, 17], using typical Fermi velocities vF ≈ 6–8 ×
104 m s−1 determined from quantum-oscillation experiments
on YBa2Cu4O8 and YBa2Cu3O6.5 [8–12]. This provides a
natural explanation for the observed linear dependence of δ
on Tc [4, 7]. A slightly stronger coupling 2�0/kBTc ≈ 6 is
required for the YBa2Cu3O7−x series [5, 6].

Incommensurate diffraction peaks in metallic systems are
almost always associated with Fermi-surface nesting, in which
the periodicity of spin or change modulation is determined
by the topology of the Fermi surface [23]. Whilst the tight-
binding calculations of the cuprate Fermi surface usually give
a single, large hole pocket [13, 14], the recent experimental
observations of (multiple) small pockets in the underdoped
cuprates [8, 9, 11, 12] supports the suggestion that some form
of nesting occurs [11, 13, 14]. Added weight is given by the
similarity of the incommensurate mode dispersion (figure 1(b))
to those observed in itinerant antiferromagnets such as Cr and
V2−xO3 [24–26] (both above and below the Neél temperature).

In such a picture, the cuprate Fermi surface plays an
increasingly important role as the hole doping p is increased.
Thus, just as in V2−x O3 [24], large-moment antiferromagnetic
insulator behaviour in the cuprates eventually gives way
to small-moment incommensurate itinerant antiferromagnetic
behaviour as the system becomes more metallic [3, 14].
Consistent with itinerant magnetism, the orbitally-averaged
Fermi velocity vF = √

2eh̄ F/m∗ ≈ 8 × 104 m s−1, where F
is the Shubnikov–de Haas oscillation frequency, of the pockets
in YBa2Cu3O6.5 [8, 11] is comparable to the mode velocity

v0 = 2a Er/π h̄δ ≈ 14×104 m s−1 (at E = 0) that one obtains
fitting equation (2) to the E-versus-q data points obtained from
inelastic neutron-scattering experiments on the same sample
composition [6]1 (figure 1(b)). As p increases toward optimum
doping, E0 in figure 1(a) also increases [2, 3, 20], providing a
suitable characteristic energy scale (∼10 s meV, i.e. ∼100 s of
kelvin) for Tc [2].

In conventional BCS superconductors, the quasi-particle
interactions that result in pairing are via charge coupling
to acoustic phonon modes [16, 17]. The incommensurate
spin fluctuations have a dispersion relationship (figure 1(a))
analogous to that of the acoustic phonons (i.e. approximately
linear as E → 0, saturating at a maximum energy that
defines the energy scale of Tc). However, in contrast to the
acoustic phonons, which have E = 0 at the Brillouin-zone
centre, E = 0 in the antiferromagnetic-fluctuation dispersion
relationships occurs at finite q , leading to the coupling between
the lengthscales ξ0 and d (figures 1(a) and 3). No such
lengthscale phenomenology occurs in conventional s-wave
superconductors, where the q → 0 phonons mediate the
pairing mechanism.

The remaining ingredient in the problem is therefore a
coupling mechanism between the spin fluctuations and the
charge inherent in the Cooper pair. This is found in the large
onsite correlation energy U , which inhibits double occupancy
of spins or holes [27]. Consequently, local variations in
the density of holes 	ρh and spin-density amplitude 	s are
expected to be subject to the relation

	ρh ∝ −	|s|. (5)

Pairing mechanisms involving this behaviour have been
considered both in the weak (small Hubbard U ) [28] and strong
(large Hubbard U ) [29] coupling limits, although typically
in conjunction with long-range antiferromagnetic order.
However, there is no reason to suspect that such mechanisms
will not apply in regimes where the antiferromagnetism is
strongly fluctuating [3]. Therefore, because of the reciprocity
relationship (equation (5)), the slowly varying modulation
of the spin-fluctuation intensity should be accompanied by

1 Ideally, v0 should be compared with the Fermi velocity of the
unreconstructed Fermi surface, which is expected to be somewhat higher
owing to its larger cross-section in k-space [13, 14].
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a concomitant charge modulation ρ̄h(r) ∝ −|s̄(r)|. The
very similar form of ρh(r) ∝ −|s(r)| in the second column
of figure 2 to ρc ∝ |�(r)|2 in the third column of
figure 2 therefore provides direct evidence for a ‘spatial charge
commensurability’ between the Cooper-pair wavefunction and
incommensurate spin fluctuations.

Qualitatively, the Cooper pairs in this work are spa-
tially compact near optimum doping (figure 3), resembling
the strong-coupling spin-bipolarons of Mott and Alexan-
drov [27, 29]. Away from optimum doping,they become
spatially extended, like a weak-coupling dx2−y2 variant of the
‘spin bags’ proposed by Schrieffer et al [28]. The difference
between these pictures is that the fluctuations mediating the
superconductivity in the present proposal are characteristic of
a system on the brink of long-range order, rather than an
established antiferromagnet.

In summary, based on measurements including Fermi-
surface studies [8–12], neutron-scattering data [2–6] and
resistivity experiments [21, 22], we propose that the unusually
high superconducting transitions in the cuprates are driven by
an exact mapping of the incommensurate spin fluctuations onto
the dx2−y2 Cooper-pair wavefunction. The spin fluctuations
are driven by the Fermi-surface topology, which is prone to
nesting [11, 13, 14]; they couple to the itinerant holes via the
strong onsite Coulomb correlation energy U , which prohibits
double occupancy of spins or holes [27]. The maximum
energy of the fluctuations (∼100s of kelvin [2, 3, 20]) gives
an appropriate energy scale for the superconducting Tc. Based
on these findings, one can specify the features necessary for
a solid to exhibit ‘high Tc’ superconductivity; (i) the material
should be quasi-two-dimensional, with the conducting layers
exhibiting four-fold symmetry (to ensure that fluctuations are
optimally configured to a d-wave order parameter); (ii) the
material should have a Fermi-surface topology susceptible
to nesting, so as to produce antiferromagnetic fluctuations
with a large degree of incommensurability δ; (iii) however,
the electron–phonon coupling should be moderate, to prevent
formation of stripe or charge–density-wave-like phenomena
that compete with superconductivity [30]; in other oxides,
the larger electron–phonon coupling dominates, preventing
superconductivity [31].

We are grateful to Ed Yelland, Roger Cowley, Wei Bao,
Sasha Balatsky, Bill Hayes and Bill Buyers for stimulating
discussions. This work is supported by the US Department of
Energy (DoE) BES programme ‘Science in 100 T’. NHMFL is
funded by the National Science Foundation, DoE and the State
of Florida.
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